Solving Fredholm integral equations of the first kind using Muntz wavelets

被引:21
作者
Bahmanpour, Maryam [1 ]
Kajani, Majid Tavassoli [1 ]
Maleki, Mohammad [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Isfahan Khorasgan Branch, Esfahan, Iran
关键词
Muntz Legendre polynomials; Muntz wavelets; Integral equation of the first kind; Matrix method; Jacoby polynomials; LINEAR INTEGRODIFFERENTIAL EQUATION; NUMERICAL-SOLUTION; COLLOCATION METHOD;
D O I
10.1016/j.apnum.2019.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Muntz-Legendre polynomials arise by orthogonalizing the Muntz system {x(lambda 1), x(lambda 2), ....} with respect to the weight function w(x) =1 on [0, 1]. In this paper, we introduce Muntz wavelets by using the Muntz-Legendre polynomials on the interval [0, 1]. Using Jacobi polynomials we make the numerical evaluation of Muntz wavelets more stable. Next, this basis in combination with a matrix method is utilized to solve Fredholm integral equations of the first kind, which have many applications in several fields of computational physics. Errors of the proposed method are studied and numerical results are given to demonstrate the spectral accuracy of the method. We will show that the proposed method, in contrast to other wavelet methods, is capable of providing highly accurate results for solutions with fractional powers. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 171
页数:13
相关论文
共 29 条
[1]   Chebyshev Wavelet Method for Numerical Solution of Fredholm Integral Equations of the First Kind [J].
Adibi, Hojatollah ;
Assari, Pouria .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
[2]  
Almira J.M., 2007, I. Surv. Approx. Theory, V3, P152
[3]  
[Anonymous], 1985, COMPUTATIONAL METHOD
[4]  
Araghi M. A. Fariborzi, 2008, INT J MATH SCI ENG A, V2, P1
[5]   Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet [J].
Babaaghaie, A. ;
Maleknejad, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :643-651
[6]  
BABOLIAN E, 1979, J I MATH APPL, V24, P157
[7]   A Muntz wavelets collocation method for solving fractional differential equations [J].
Bahmanpour, M. ;
Tavassoli-Kajani, Majid ;
Maleki, M. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) :5514-5526
[8]  
Bahmanpour M., 2013, Anal. Theory Appl., V29, P197, DOI 10.4208/ata.2013.V29.n3.1
[9]  
Bahmanpour M, 2012, J MATH COMPUT SCI-JM, V5, P337
[10]  
Canuto C, 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6