Enterprise Network Marketing Prediction Using the Optimized GA-BP Neural Network

被引:4
|
作者
Yang, Ruyi [1 ]
机构
[1] Anyang Normal Univ, Sch Business, Anyang 455000, Henan, Peoples R China
关键词
Profitability - Sales - Genetic algorithms - Competition - Forecasting - Commerce;
D O I
10.1155/2020/6682296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a brand-new marketing method, network marketing has gradually become one of the main ways and means for enterprises to improve profitability and competitiveness with its unique advantages. Using these marketing data to build a model can dig out useful information that the business is concerned about, and the company can then formulate marketing strategies based on this information. Sales forecasting is to speculate on the future based on historical sales. It is a tool for companies to determine production volume and ensure the balance of product supply and sales. It can help companies make correct business decisions to maximize profits. The neural network can approximate the nonlinear function with arbitrary precision, and the time series prediction model based on the neural network can well reflect the nonlinear development trend of information. Based on the analysis of the shortcomings of the traditional BP network, this paper uses a genetic algorithm with good global search capabilities to improve the neural network. The thought and theory of optimizing the initial weight and threshold of the neural network of the GA algorithm are discussed in detail. While expounding the forecasting method, it uses specific examples to analyze the performance and characteristics of the GA-BP network in the enterprise network marketing forecasting. The results show that the GA-BP neural network is higher than the traditional BP neural network in terms of prediction accuracy and adaptability.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Prediction of Ore Quantity Based on GA-BP Neural Network
    Guo, Li
    Wu, Qiong
    Gu, Qinghua
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT IN THE MINERALS INDUSTRY (SDIMI 2017), 2017, 2 : 78 - 82
  • [2] GA-BP Neural Network Based Tire Noise Prediction
    Che Yong
    Xiao Wangxin
    Chen Lijun
    Huang Zhichu
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 65 - +
  • [3] Prediction of tool wear based on GA-BP neural network
    Wei, Weihua
    Cong, Rui
    Li, Yuantong
    Abraham, Ayodele Daniel
    Yang, Changyong
    Chen, Zengtao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2022, 236 (12) : 1564 - 1573
  • [4] Application of GA-BP Neural Network in MMS Index Prediction
    Wang Huaibin
    Wang Li
    Wang Chundong
    Zhou Haiyun
    EMERGING COMPUTATION AND INFORMATION TECHNOLOGIES FOR EDUCATION, 2012, 146 : 253 - 259
  • [5] Life prediction of nepe propellant base on GA-BP neural network
    Mo, Wen-Bin
    Li, Jin-Xian
    Huozhayao Xuebao/Chinese Journal of Explosives and Propellants, 2009, 32 (05): : 58 - 61
  • [6] Temperature prediction and analysis based on improved GA-BP neural network
    Zhang, Ling
    Sun, Xiaoqi
    Gao, Shan
    AIMS ENVIRONMENTAL SCIENCE, 2022, 9 (05) : 735 - 753
  • [7] Prediction of Residents' Travel Modes Based on GA-BP Neural Network
    Kong, Yaoyao
    Liang, Yanping
    Xu, Jiajun
    CICTP 2020: ADVANCED TRANSPORTATION TECHNOLOGIES AND DEVELOPMENT-ENHANCING CONNECTIONS, 2020, : 157 - 166
  • [8] GA-BP neural network modeling for project portfolio risk prediction
    Bai, Libiao
    Wei, Lan
    Zhang, Yipei
    Zheng, Kanyin
    Zhou, Xinyu
    JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT, 2024, 37 (03) : 828 - 850
  • [9] Small obstacle size prediction based on a GA-BP neural network
    Ning, Yu
    Jin, Yongping
    Peng, Youduo
    Yan, Jian
    APPLIED OPTICS, 2022, 61 (01) : 177 - 187
  • [10] Building Carbon Emission Scenario Prediction Using STIRPAT and GA-BP Neural Network Model
    Zhang, Sensen
    Huo, Zhenggang
    Zhai, Chencheng
    SUSTAINABILITY, 2022, 14 (15)