Shilnikov Chaos in Oscillators with Huygens Coupling

被引:9
作者
Belykh, Vladimir N. [1 ]
Pankratova, Evgeniya V.
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, Nizhnii Novgorod 603950, Russia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 08期
基金
俄罗斯基础研究基金会;
关键词
Homoclinic orbit; heteroclinic contour; Shilnikov chaos;
D O I
10.1142/S0218127414400070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider van der Pol-Duffing oscillators coupled via a two-dimensional linear system, representing Huygens coupling. We demonstrate that two identical synchronized oscillators can have chaotic movements and exhibit Shilnikov chaos. We rigorously prove the existence of a homoclinic orbit of a saddle-focus and a symmetrical heteroclinic contour of two saddle-foci, leading to the appearance of chaos via the Shilnikov saddle-focus bifurcation. We also support our analytical results with numerical simulations, revealing the main signature of Shilnikov chaos, the coexistence of chaotic and regular attractors with riddled basins of attraction, including wild attractors.
引用
收藏
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 2007, Scholarpedia, DOI [10.4249/scholarpedia.1891, DOI 10.4249/SCHOLARPEDIA.1891]
[2]  
[Anonymous], 1965, SOV MATH DOKL
[3]  
[Anonymous], 2000, AMS
[4]  
Belykh V. N., 2008, P ENOC 2008 SAINT PE
[5]  
Belykh V. N., 1997, Proc. Steklov Inst. Math, V216, P14
[6]  
Belyustina L., 1973, Differentsial'nye Uravneniya, V9, P595
[7]   Huygens's clocks [J].
Bennett, M ;
Schatz, MF ;
Rockwood, H ;
Wiesenfeld, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2019) :563-579
[8]  
Blekhman II., 1988, SYNCHRONIZATION SCI
[9]  
Oud W. T., 2006, GROUP COORDINATIONS, P66
[10]   Synchronization of metronomes [J].
Pantaleone, J .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (10) :992-1000