The QR algorithm

被引:31
作者
Parlett, BN [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept EECS, Div Comp Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1109/5992.814656
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
After a brief sketch of the early days of eigenvalue hunting, the author describes the QR Algorithm and ifs major virtues, The symmetric case brings with it guaranteed convergence and an elegant implementation. An account of the impressive discovery of the algorithm brings the article to a close.
引用
收藏
页码:38 / 42
页数:5
相关论文
共 13 条
[1]  
Anderson E., 1995, LAPACK USERS GUIDE
[2]   LINEAR CONVERGENCE IN THE SHIFTED QR ALGORITHM [J].
BATTERSON, S ;
DAY, D .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :141-151
[3]  
Faddeev D.K., 1963, Computational Methods of Linear Algebra
[4]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[5]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[6]  
JENNINGS A, 1977, MATRIX COMPUTATIONS
[7]  
KUBLANOVSKAYA V.N., 1961, USSR COMP MATH MATH+, V3, P637
[8]   GLOBAL CONVERGENCE OF BASIC QR ALGORITHM ON HESSENBERG MATRICES [J].
PARLETT, B .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :803-&
[9]  
PARLETT BN, 1998, SYMMETRIC ELGENVALUE
[10]  
RUTISHAUSER H, 1954, Z ANGEW MATH PHYS, V5, P233, DOI DOI 10.1007/BF01600331