A priori estimates of solutions to nonlinear fractional Laplacian equation

被引:0
作者
Zhang, Tao [1 ]
Cheng, Tingzhi [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
a priori estimates; fractional Laplacian; nonlocal problems; PRESCRIBING SCALAR CURVATURE; ELLIPTIC-EQUATIONS; YAMABE PROBLEM; MOVING PLANES; S-N; COMPACTNESS; REGULARITY; SYMMETRY; MONOTONICITY; EXISTENCE;
D O I
10.3934/era.2023056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on the research of a priori estimates of several types of semi-linear fractional Laplacian equations with a critical Sobolev exponent. Employing the method of moving planes, we can achieve a priori estimates which are closely connected to the existence of solutions to nonlinear fractional Laplacian equations. Our result can extend a priori estimates of the second order elliptic equation to the fractional Laplacian equation and we believe that the method used here will be applicable to more general nonlocal problems.
引用
收藏
页码:1119 / 1133
页数:15
相关论文
共 42 条
[1]  
Alexandrov A.D., 1962, Annali di Matematica Pura ed Applicata, V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[2]  
Berestycki H., 1988, J GEOM PHYS, V5, P237, DOI DOI 10.1016/0393-0440(88)90006-X
[3]  
Berestycki H., 1991, B SOC BRASIL MAT NS, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[4]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[5]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[8]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics, DOI DOI 10.1007/978-3-7091-2664-6
[9]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[10]   THE SCALAR CURVATURE EQUATION ON 2-SPHERE AND 3-SPHERE [J].
CHANG, SYA ;
GURSKY, MJ ;
YANG, PC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :205-229