Time-dependent potential-functional embedding theory

被引:22
作者
Huang, Chen [1 ]
Libisch, Florian [2 ]
Peng, Qing [3 ]
Carter, Emily A. [4 ,5 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[4] Princeton Univ, Dept Mech & Aerosp Engn & Chem, Program Appl & Computat Math, Princeton, NJ 08544 USA
[5] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; EXCHANGE-CORRELATION POTENTIALS; COUPLED-CLUSTER APPROACH; SELF-CONSISTENT-FIELD; KOHN-SHAM EQUATIONS; EXCITATION-ENERGIES; DENSITY FUNCTIONALS; LINEAR-RESPONSE; SURFACES; ACCURATE;
D O I
10.1063/1.4869538
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na-4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 88 条
[11]   Time-dependent density functional theory beyond linear response: An exchange-correlation potential with memory [J].
Dobson, JF ;
Bunner, MJ ;
Gross, EKU .
PHYSICAL REVIEW LETTERS, 1997, 79 (10) :1905-1908
[12]   HARMONIC-POTENTIAL THEOREM - IMPLICATIONS FOR APPROXIMATE MANY-BODY THEORIES [J].
DOBSON, JF .
PHYSICAL REVIEW LETTERS, 1994, 73 (16) :2244-2247
[13]   Probing Electron Correlation via Attosecond xuv Pulses in the Two-Photon Double Ionization of Helium [J].
Feist, J. ;
Nagele, S. ;
Pazourek, R. ;
Persson, E. ;
Schneider, B. I. ;
Collins, L. A. ;
Burgdoumlrfer, J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (06)
[14]   Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory [J].
Fuchs, M ;
Scheffler, M .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 119 (01) :67-98
[15]   Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds [J].
Fux, Samuel ;
Jacob, Christoph R. ;
Neugebauer, Johannes ;
Visscher, Lucas ;
Reiher, Markus .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (16)
[16]   Communication: Dynamical embedding: Correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region [J].
Gao, Yi ;
Neuhauser, Daniel .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18)
[17]   Dynamical quantum-electrodynamics embedding: Combining time-dependent density functional theory and the near-field method [J].
Gao, Yi ;
Neuhauser, Daniel .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (07)
[18]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[19]   Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes [J].
Goodpaster, Jason D. ;
Barnes, Taylor A. ;
Manby, Frederick R. ;
Miller, Thomas F., III .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (22)
[20]   Exact nonadditive kinetic potentials for embedded density functional theory [J].
Goodpaster, Jason D. ;
Ananth, Nandini ;
Manby, Frederick R. ;
Miller, Thomas F., III .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (08)