Brittle fracture in a periodic structure with internal potential energy

被引:14
作者
Mishuris, Gennady S. [1 ]
Slepyan, Leonid I. [1 ,2 ]
机构
[1] Aberystwyth Univ, Inst Math & Phys, Ceredigion SY23 3BZ, Wales
[2] Tel Aviv Univ, Sch Mech Engn, IL-69978 Tel Aviv, Israel
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 470卷 / 2165期
关键词
fracture mechanics; microlevel stresses; lattices; integral transforms; RESPONSE SENSITIVITY; INTERFACE; DYNAMICS; CRACK;
D O I
10.1098/rspa.2013.0821
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a brittle fracture taking account of self-equilibrated distributed stresses existing at microlevel in the absence of external forces. To determine how the latter can affect the crack equilibrium and growth, a model of a structured linearly elastic body is introduced, consisting of two equal symmetrically arranged layers (or half-planes) connected by an interface as a prospective crack path. The interface comprises a discrete set of elastic bonds. In the initial state, the bonds are assumed to be stressed in such a way that tensile and compressive forces of the same value alternate. In the general considerations, the layers are assumed to be of an unspecified periodic structure, where such self-equilibrated stresses may also exist. A two-line chain and a lattice are examined as the specified structure. We consider the states of the body-with-a-crack under such microlevel stresses (MS) and under a combined action of the remote forces and MS. Analytical solutions to the considered problems are presented based on the introduction of a selective discrete transform. We demonstrate that MS can increase as well as decrease the crack resistance depending on the internal energy level. We also discuss different scenarios of the crack growth.
引用
收藏
页数:25
相关论文
共 27 条
[1]   Determination of the effect of residual curing stresses on an interface crack by means of the weight function method [J].
Banks-Sills, L ;
Ashkenazi, D ;
Eliasi, R .
COMPUTATIONAL MECHANICS, 1997, 19 (06) :507-510
[2]   Fracture toughness of the+45°/-45° interface of a laminate composite [J].
Banks-Sills, Leslie ;
Freed, Yuval ;
Eliasi, Rami ;
Fourman, Victor .
INTERNATIONAL JOURNAL OF FRACTURE, 2006, 141 (1-2) :195-210
[3]  
Barenblatt G., 1959, APPL MATH MECH-ENGL, V23, P622, DOI 10.1016/0021-8928(59)90157-1
[4]  
Barenblatt G.I., 1959, Journal of Applied Mathematics Mechanics, V23, P622, DOI [10.1016/0021-8928(59)90130-3, DOI 10.1016/0021-8928(59)90130-3]
[5]  
Barenblatt GI, 1962, Adv Appl Mech, V7, P55, DOI [10.1016/S0065-2156(08)70121-2, DOI 10.1016/S0065-2156(08)70121-2]
[6]   Application of Response Sensitivity in Composite Processing [J].
Bebamzadeh, A. ;
Haukaas, T. ;
Vaziri, R. ;
Poursartip, A. ;
Fernlund, G. .
JOURNAL OF COMPOSITE MATERIALS, 2010, 44 (15) :1821-1840
[7]   Response Sensitivity and Parameter Importance in Composites Manufacturing [J].
Bebamzadeh, A. ;
Haukaas, T. ;
Vaziri, R. ;
Poursartip, A. ;
Fernlund, G. .
JOURNAL OF COMPOSITE MATERIALS, 2009, 43 (06) :621-659
[8]  
Griffith A.A., 1924, Proceedings from the 1st International Congress on Applied Mechanics, Delft, Netherlands, P54
[9]  
Griffith A.A., 1921, Masinovedenie. C, V221, P163, DOI DOI 10.1098/RSTA.1921.0006
[10]   Waves and fracture in an inhomogeneous lattice structure [J].
Mishuris, G. S. ;
Movchan, A. B. ;
Slepyan, L. I. .
WAVES IN RANDOM AND COMPLEX MEDIA, 2007, 17 (04) :409-428