Alternative translation techniques for propositional and first-order modal logics

被引:2
作者
Montanari, A
Policriti, A
Slanina, M
机构
[1] Univ Udine, Dept Math & Comp Sci, I-33100 Udine, Italy
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
关键词
translation methods; (first-order) modal logics; computable set theories;
D O I
10.1023/A:1015849504706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe and analyze techniques, other than the standard relational/functional methods, for translating validity problems of modal logics into first-order languages. For propositional modal logics we summarize the square-as-Pow method, a complete and automatic translation into a weak set theory, and then describe an alternative method, which we call algebraic, that achieves the same full generality of square-as-Pow but is simpler and computationally more attractive. We also discuss the relationships between the two methods, showing that square-as-Pow generalizes to the first-order case. For first-order modal logics, we describe two extensions, of different degrees of generality, of square-as-Pow to logics of rigid designators and constant domains.
引用
收藏
页码:397 / 415
页数:19
相关论文
共 30 条
[1]  
Aczel P., 1988, CSLI Lecture Notes
[2]  
[Anonymous], MONOGRAPHS COMPUTER
[3]  
[Anonymous], HDB PHILOS LOGIC
[4]  
[Anonymous], 1993, LOG J IGPL
[5]  
BLACKBURN P, 2001, CAMBRIDGE TRACTS THE, V53
[6]  
DAGOSTINO G, 1996, P 5 IT C THEOR COMP, P326
[7]  
DAGOSTINO G, 1995, J AUTOM REASONING, V15, P314
[8]  
Davis M., 1993, HDB LOGIC ARTIFICIAL, V1, P31
[9]  
DYCKHOFF R, 2000, LECT NOTES ARTIFICIA, V1847
[10]  
FITTING M, 1993, HDB LOGIC ARTIFICIAL, V1, P395