Solvability of an initial-boundary value problem for a nonlinear pseudoparabolic equation with degeneration

被引:1
作者
Aitzhanov, S. E. [1 ,2 ]
Tileuberdi, Zh [1 ]
Sanat, G. [1 ]
机构
[1] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
[2] Int Informat Technol Univ, Alma Ata, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2022年 / 105卷 / 01期
关键词
pseudo parabolic equations; degenerate equations; boundary value problems; nonlinear equations; solvability; uniqueness;
D O I
10.31489/2022M1/4-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to the solvability of degenerate nonlinear equations of pseudoparabolic type. Such problems appear naturally in physical and biological models. The article aims to study the solvability in the classes of regular solutions of (all derivatives generalized in the sense of S.L. Sobolev included in the equation) initial-boundary value problems for differential equations. For the problems under consideration, We have found conditions on parameters ensuring the existence of solutions and we have proved existence and uniqueness theorems. The main method for proving the solvability of boundary value problems is the regularization method.
引用
收藏
页码:4 / 12
页数:9
相关论文
共 16 条
[1]   Energy Decay for a Degenerate Wave Equation under Fractional Derivative Controls [J].
Benaissa, Abbes ;
Aichi, Chahira .
FILOMAT, 2018, 32 (17) :6045-6072
[2]   On the stabilization of a vibrating equation [J].
Chentouf, B ;
Xu, CZ ;
Sallet, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) :537-558
[3]   PSEUDOPARABOLIC EQUATIONS IN ONE SPACE VARIABLE [J].
COLTON, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (03) :559-&
[4]  
Dzhuraev T.D., 1979, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov(Boundary Value Problems for Equations of Mixed and Mixed-Composite Types)
[5]  
Fichera G., 1960, BOUNDARY PROBLEMS DI, P97
[6]  
Gevrey M., 1914, J MATH-UK, V10, P105
[7]  
Gorkov Yu.P, 1970, DIFF EQUAT+, V6, P1064
[8]  
Kozhanov A.I., 2020, MATEMATICHESKIE ZAME, V27, P16
[9]   DEGENERATING PARABOLIC EQUATIONS WITH A VARIABLE DIRECTION OF EVOLUTION [J].
Kozhanov, Alexandr Ivanovich ;
Macievskaya, Ekaterina Evgenievna .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 :718-731
[10]  
Ladyzhenskaya O.A, 1967, LINEINYE KVAZILINEIN