Inertial focusing of microparticles in curvilinear microchannels with different curvature angles

被引:17
作者
Ozbey, Arzu [1 ]
Karimzadehkhouei, Mehrdad [1 ]
Bayrak, Ozgecan [2 ]
Kosar, Ali [1 ,3 ,4 ]
机构
[1] Sabanci Univ, Mechatron Engn Program, Fac Engn & Nat Sci, TR-34956 Tuzla Istanbul, Turkey
[2] Yildiz Tech Univ, Mech Engn Program, Fac Mech Engn, TR-34349 Besiktas, Turkey
[3] Sabanci Univ, Ctr Excellence Funct Surfaces & Interfaces Nanodi, TR-34956 Tuzla Istanbul, Turkey
[4] Sabanci Univ Nanotechnol & Applicat Ctr SUNUM, TR-34956 Tuzla Istanbul, Turkey
关键词
Microfluidics; Inertial microfluidics; Fluorescent particle focusing; Curvilinear channel; SIZE-SELECTIVE SEPARATION; MACROSCOPIC RIGID SPHERES; CIRCULATING TUMOR-CELLS; POISEUILLE FLOW; MICROFLUIDIC DEVICES; PARTICLE SEPARATION; CONTRACTION/EXPANSION MICROCHANNELS; MICROSPHERES; MIGRATION; FILTRATION;
D O I
10.1007/s10404-018-2082-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inertial microfluidics has become one of the emerging topics due to potential applications such as particle separation, particle enrichment, rapid detection and diagnosis of circulating tumor cells. To realize its integration to such applications, underlying physics should be well understood. This study focuses on particle dynamics in curvilinear channels with different curvature angles (280A degrees, 230A degrees, and 180A degrees) and different channel heights (90, 75, and 60 A mu m) where the advantages of hydrodynamic forces were exploited. We presented the cruciality of the three-dimensional particle position with respect to inertial lift forces and Dean drag force by examining the focusing behavior of 20 A mu m (large), 15 A mu m (medium) and 10 A mu m (small) fluorescent polystyrene microparticles for a wide range of flow rates (400-2700 A mu L/min) and corresponding channel Reynolds numbers. Migration of the particles in lateral direction and their equilibrium positions were investigated in detail. In addition, in the light of our findings, we described two different regions: transition region, where the inner wall becomes the outer wall and vice versa, and the outlet region. The maximum distance between the tight particle stream of 20 and 15 A mu m particles was obtained in the 90 high channel with curvature angle of 280A degrees at Reynolds number of 144 in the transition region (intersection of the turns), which was the optimum condition/configuration for focusing.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Inertial microfluidic physics [J].
Amini, Hamed ;
Lee, Wonhee ;
Di Carlo, Dino .
LAB ON A CHIP, 2014, 14 (15) :2739-2761
[2]   The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number [J].
Asmolov, ES .
JOURNAL OF FLUID MECHANICS, 1999, 381 :63-87
[3]   Microfluidics for cell separation [J].
Bhagat, Ali Asgar S. ;
Bow, Hansen ;
Hou, Han Wei ;
Tan, Swee Jin ;
Han, Jongyoon ;
Lim, Chwee Teck .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (10) :999-1014
[4]   Inertial microfluidics for continuous particle filtration and extraction [J].
Bhagat, Ali Asgar S. ;
Kuntaegowdanahalli, Sathyakumar S. ;
Papautsky, Ian .
MICROFLUIDICS AND NANOFLUIDICS, 2009, 7 (02) :217-226
[5]   Continuous particle separation in spiral microchannels using dean flows and differential migration [J].
Bhagat, Ali Asgar S. ;
Kuntaegowdanahalli, Sathyakumar S. ;
Papautsky, Ian .
LAB ON A CHIP, 2008, 8 (11) :1906-1914
[6]   Directed transport and location-designated rotation of nanowires using ac electric fields [J].
Chen, Ke ;
Xiang, Nan ;
Quan, Yunlin ;
Zhu, Xiaolu ;
Sun, Dongke ;
Yi, Hong ;
Ni, Zhonghua .
MICROFLUIDICS AND NANOFLUIDICS, 2014, 16 (1-2) :237-246
[7]   Standing surface acoustic wave (SSAW)-based microfluidic cytometer [J].
Chen, Yuchao ;
Nawaz, Ahmad Ahsan ;
Zhao, Yanhui ;
Huang, Po-Hsun ;
McCoy, J. Phillip ;
Levine, Stewart J. ;
Wang, Lin ;
Huang, Tony Jun .
LAB ON A CHIP, 2014, 14 (05) :916-923
[8]   Rare cell isolation and analysis in microfluidics [J].
Chen, Yuchao ;
Li, Peng ;
Huang, Po-Hsun ;
Xie, Yuliang ;
Mai, John D. ;
Wang, Lin ;
Nam-Trung Nguyen ;
Huang, Tony Jun .
LAB ON A CHIP, 2014, 14 (04) :626-645
[9]   A computational study of the inertial lift on a sphere in a linear shear flow field [J].
Cherukat, P ;
McLaughlin, JB ;
Dandy, DS .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1999, 25 (01) :15-33
[10]   Microchannel Anechoic Corner for Size-Selective Separation and Medium Exchange via Traveling Surface Acoustic Waves [J].
Destgeer, Ghulam ;
Ha, Byung Hang ;
Park, Jinsoo ;
Jung, Jin Ho ;
Alazzam, Anas ;
Sung, Hyung Jin .
ANALYTICAL CHEMISTRY, 2015, 87 (09) :4627-4632