On the Jump set of Solutions of the Total Variation Flow

被引:11
作者
Caselles, V. [1 ]
Jalalzai, K. [2 ]
Novaga, M. [3 ]
机构
[1] Univ Pompeu Fabra, Dept Tecnol, Barcelona, Spain
[2] Ecole Polytech, CNRS, CMAP, UMR 7641, F-91128 Palaiseau, France
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2013年 / 130卷
关键词
Total variation flow; demonising model; nonlinear parabolic equations; functions of bounded variation; DENOISING PROBLEM;
D O I
10.4171/RSMUP/130-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the jump set of the solution of the minimizing Total Variation flow decreases with time for any initial condition in BV(Omega) boolean AND L-N(Omega). We prove that the size of the jump also decreases with time.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 20 条
[1]   A characterization of convex calibrable sets in IRN [J].
Alter, F ;
Caselles, V ;
Chambolle, A .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :329-366
[2]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP, VXVIII
[3]  
Ambrosio L., 1997, CORSO INTRO TEORIA G
[4]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[5]  
Andreu F, 2004, PARABOLIC QUASILINEA
[6]  
Andreu F., 2001, DIFFERENTIAL INTEGRA, V14, P321
[7]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[8]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P293
[9]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[10]  
Caselles V., 2010, HDB MATH METHODS IMA, P1016