Stability of singular Hopf bifurcations

被引:8
作者
Yang, LJ [1 ]
Zeng, XW
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
singular Hopf bifurcation; singularly perturbed system; Lyapunov constant; stability constant; stability formula;
D O I
10.1016/j.jde.2004.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A stability formula is given for the singular Hopf bifurcation arising in singularly perturbed systems of the form (x)over dot = epsilonf (x, y, lambda), (y)over dot = g(x, y, lambda) in this paper. The derivation of the formula is based on a reduction technique and on an existing stability formula for Hopf bifurcation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 54
页数:25
相关论文
共 14 条
[1]  
AMANN H, 1990, ORDINDARY DIFFERENTI
[2]   SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS .2. [J].
BAER, SM ;
ERNEUX, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) :1651-1664
[3]  
Beardmore RE, 2000, DYNAM STABIL SYST, V15, P319, DOI 10.1080/02681110010001234
[4]   The singularity-induced bifurcation and its Kronecker normal form [J].
Beardmore, RE .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :126-137
[5]  
BEYN WJ, 1996, 96050 DANSE DFG SCHW
[6]   DEGENERATE HOPF-BIFURCATION FORMULAS AND HILBERTS 16TH PROBLEM [J].
FARR, WW ;
LI, CZ ;
LABOURIAU, IS ;
LANGFORD, WF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (01) :13-30
[7]  
Golubitsky M., 1985, APPL MATH SCI, V51
[8]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO, V42
[9]  
Kuznetsov Yu.A., 1995, APPL MATH SCI, V112
[10]  
LIJUN Y, 2003, IEEE T AUTOMAT CONTR, V48, P660