Jensen-type geometric shapes

被引:2
|
作者
Pasteczka, Pawel [1 ]
机构
[1] Pedag Univ Krakow, Dept Math, Krakow, Poland
关键词
Shapes; Platonic shapes; sphere; ball; Jensen's inequality;
D O I
10.2478/aupcsm-2020-0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present both necessary and sufficient conditions for a convex closed shape such that for every convex function the average integral over the shape does not exceed the average integral over its boundary. It is proved that this inequality holds for n-dimensional parallelotopes, n-dimensional balls, and convex polytopes having the inscribed sphere (tangent to all its facets) with the centre in the centre of mass of its boundary.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 50 条
  • [11] Reverses of the Jensen-Type Inequalities for Signed Measures
    Jaksic, Rozarija
    Pecaric, Josip
    Lipanovic, Mirna Rodic
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [12] General hyperstability criteria for Jensen-type equations
    Daianu, Dan M.
    AEQUATIONES MATHEMATICAE, 2024, 98 (04) : 1039 - 1052
  • [13] JENSEN-TYPE INEQUALITIES FOR A CLASS OF CONVEX FUNCTIONS
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi Alao
    Omotoyinbo, Opeyemi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (03): : 655 - 666
  • [15] Ostrowski and Jensen-type inequalities via (s, m)-convex functions in the second sense Ostrowski and Jensen-type inequalities and generalized convexity
    Jose Vivas-Cortez, Miguel
    Hernandez Hernandez, Jorge Eliecer
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 287 - 302
  • [16] EXTERNAL JENSEN-TYPE OPERATOR INEQUALITIES VIA SUPERQUADRATICITY
    Kian, Mohsen
    Krnic, Mario
    Delavar, Mohsen Rostamian
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (02) : 287 - 299
  • [17] A Simple Proof of the Jensen-Type Inequality of Fink and Jodeit
    Mihai, Marcela V.
    Niculescu, Constantin P.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 119 - 126
  • [18] A Simple Proof of the Jensen-Type Inequality of Fink and Jodeit
    Marcela V. Mihai
    Constantin P. Niculescu
    Mediterranean Journal of Mathematics, 2016, 13 : 119 - 126
  • [19] ON A JENSEN-TYPE INEQUALITY FOR F-CONVEX FUNCTIONS
    Adamek, Miroslaw
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1355 - 1364
  • [20] JENSEN-TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS
    Khodabakhshian, H.
    Goudarzi, N.
    Safshekan, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (02): : 113 - 123