A flexible micro fluid transport system featuring magnetorheological elastomer

被引:38
作者
Behrooz, Majid [1 ]
Gordaninejad, Faramarz [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, Composite & Intelligent Mat Lab, Reno, NV 89557 USA
关键词
magnetorheological elastomer; fluid transport system; magneto-fluid-structure interaction; ARTIFICIAL BLOOD-VESSEL; MODEL; DESIGN; MEMBRANE;
D O I
10.1088/0964-1726/25/2/025011
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This study presents a flexible magnetically-actuated micro fluid transport system utilizing an isotropic magnetorheological elastomer (MRE). Theoretical modeling and analysis of this system is presented for a two-dimensional model. This fluid transport system can propel the fluid by applying a fluctuating magnetic field on the MRE. The magneto-fluid-structure interaction analysis is employed to determine movement of the solid domain and the velocity of the fluid under a controllable magnetic field. The effects of key material, geometric, and magnetic parameters on the behavior of this system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.
引用
收藏
页数:11
相关论文
共 50 条
[11]   A two-dimensional fluid-structure interaction model of the aortic value [J].
De Hart, J ;
Peters, GWM ;
Schreurs, PJG ;
Baaijens, FPT .
JOURNAL OF BIOMECHANICS, 2000, 33 (09) :1079-1088
[12]   Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm [J].
Di Martino, ES ;
Guadagni, G ;
Fumero, A ;
Ballerini, G ;
Spirito, R ;
Biglioli, P ;
Redaelli, A .
MEDICAL ENGINEERING & PHYSICS, 2001, 23 (09) :647-655
[13]  
Fahrni F, 2009, LAB CHIP, V9, P3413, DOI [10.1039/b908578e, 10.1039/b908578c]
[14]   Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity [J].
Farhat, C ;
Lesoinne, M ;
LeTallec, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 157 (1-2) :95-114
[15]   A Two-Dimensional Computational Model of Lymph Transport Across Primary Lymphatic Valves [J].
Galie, Peter ;
Spilker, Robert L. .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (11)
[16]   A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows [J].
Gerbeau, JF ;
Vidrascu, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (04) :631-647
[17]   A Review of Magnetic Composite Polymers Applied to Microfluidic Devices [J].
Gray, Bonnie L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (02) :B3173-B3183
[18]   Ferrofluid-based microchip pump and valve [J].
Hartshorne, H ;
Backhouse, CJ ;
Lee, WE .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 99 (2-3) :592-600
[19]   A ferrofluidic magnetic micropump [J].
Hatch, A ;
Kamholz, AE ;
Holman, G ;
Yager, P ;
Böhringer, KF .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2001, 10 (02) :215-221
[20]   Fluid-Structure Interaction in Internal Physiological Flows [J].
Heil, Matthias ;
Hazel, Andrew L. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 43, 2011, 43 :141-162