On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion

被引:25
作者
Kapustyan, A. V. [2 ]
Valero, J. [1 ]
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, Alicante 03202, Spain
[2] Kiev Natl Taras Shevchenko Univ, UA-01033 Kiev, Ukraine
关键词
Reaction-diffusion system; Set-valued dynamical system; Global attractor; Kneser property; Multivalued process; Multivalued semiflow; ATTRACTORS; INCLUSIONS;
D O I
10.1016/j.jmaa.2009.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Kneser property (i.e. the compactness and connectedness for the attainability set of solutions) for a reaction-diffusion system including as a particular case the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion. Using this property we obtain also that the global attractor of this system in both the autonomous and non-autonomous cases is connected. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:254 / 272
页数:19
相关论文
共 24 条
  • [1] Aubin J.-P., 1990, Set-Valued Analysis
  • [2] Ball J. M., 2000, MECH THEORY COMPUTAT, P447
  • [3] Chepyzhov V. V., 2002, Attractors for Equations of Mathematical Physics
  • [4] CHIPOT M, 2000, BIRK ADV TEXT, pR7
  • [5] Engelking R., 1977, General Topology, V2nd
  • [6] Gajewsky H., 1974, Nichlineare operatorgleichungen und operatordifferentialgleichungen
  • [7] GOBBINO M, 1996, J DIFFER EQUATIONS, V133, P1
  • [8] Hu S., 1997, HDB MULTIVALUED ANAL, DOI 10.1007/978-1-4615-6359-4
  • [9] Kneser families in infinite-dimensional spaces
    Kaminogo, T
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (05) : 613 - 627
  • [10] Kapustyan A.V., 2008, GLOBAL ATTRACTORS MU