Functional properties of resting state networks in healthy full-term newborns

被引:50
作者
De Asis-Cruz, Josepheen [1 ]
Bouyssi-Kobar, Marine [1 ]
Evangelou, Iordanis [1 ]
Vezina, Gilbert [2 ]
Limperopoulos, Catherine [1 ,2 ,3 ]
机构
[1] Childrens Natl Hlth Syst, Developing Brain Res Lab, Washington, DC 20010 USA
[2] Childrens Natl Hlth Syst, Div Diagnost Imaging & Radiol, Washington, DC 20010 USA
[3] Childrens Natl Hlth Syst, Fetal & Transit Med, Washington, DC 20010 USA
基金
加拿大健康研究院;
关键词
SPONTANEOUS BRAIN ACTIVITY; RICH-CLUB ORGANIZATION; SMALL-WORLD; CONNECTIVITY; EMERGENCE; CHILDREN; CORTEX; FMRI; HUBS;
D O I
10.1038/srep17755
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective, early, and non-invasive assessment of brain function in high-risk newborns is critical to initiate timely interventions and to minimize long-term neurodevelopmental disabilities. A prerequisite to identifying deviations from normal, however, is the availability of baseline measures of brain function derived from healthy, full-term newborns. Recent advances in functional MRI combined with graph theoretic techniques may provide important, currently unavailable, quantitative markers of normal neurodevelopment. In the current study, we describe important properties of resting state networks in 60 healthy, full-term, unsedated newborns. The neonate brain exhibited an efficient and economical small world topology: densely connected nearby regions, sparse, but well integrated, distant connections, a small world index greater than 1, and global/local efficiency greater than network cost. These networks showed a heavy-tailed degree distribution, suggesting the presence of regions that are more richly connected to others ('hubs'). These hubs, identified using degree and betweenness centrality measures, show a more mature hub organization than previously reported. Targeted attacks on hubs show that neonate networks are more resilient than simulated scale-free networks. Networks fragmented faster and global efficiency decreased faster when betweenness, as opposed to degree, hubs were attacked suggesting a more influential role of betweenness hub in the neonate network.
引用
收藏
页数:15
相关论文
共 59 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   Efficiency and cost of economical brain functional networks [J].
Achard, Sophie ;
Bullmore, Edward T. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) :174-183
[3]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[4]   Do children really recover better? Neurobehavioural plasticity after early brain insult [J].
Anderson, Vicki ;
Spencer-Smith, Megan ;
Wood, Amanda .
BRAIN, 2011, 134 :2197-2221
[5]   Rich-club organization of the newborn human brain [J].
Ball, Gareth ;
Aljabar, Paul ;
Zebari, Sally ;
Tusor, Nora ;
Arichi, Tomoki ;
Merchant, Nazakat ;
Robinson, Emma C. ;
Ogundipe, Enitan ;
Rueckert, Daniel ;
Edwards, A. David ;
Counsell, Serena J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (20) :7456-7461
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   Cognitive fitness of cost-efficient brain functional networks [J].
Bassett, Danielle S. ;
Bullmore, Edward T. ;
Meyer-Lindenberg, Andreas ;
Apud, Jose A. ;
Weinberger, Daniel R. ;
Coppola, Richard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (28) :11747-11752
[8]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[9]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[10]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,