Charge Detection in Gate-Defined Bilayer Graphene Quantum Dots

被引:49
作者
Kurzmann, Annika [1 ]
Overweg, Hiske [1 ]
Eich, Marius [1 ]
Pally, Alessia [1 ]
Rickhaus, Peter [1 ]
Pisoni, Riccardo [1 ]
Lee, Yongjin [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 300044, Japan
基金
瑞士国家科学基金会;
关键词
Bilayer graphene; quantum dot; charge detection; tunneling; multidots; SPIN;
D O I
10.1021/acs.nanolett.9b01617
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on charge detection in electrostatically defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high-quality quantum dots. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate. We show that Coulomb resonances in the sensing dot are sensitive to individual charging events on the nearby quantum dot. The potential change due to single electron charging causes a steplike change (up to 77%) in the current through the charge detector. Furthermore, the charging states of a quantum dot with tunable tunneling barriers and of coupled quantum dots can be detected.
引用
收藏
页码:5216 / 5221
页数:6
相关论文
共 33 条
[11]   Time-resolved charge detection in graphene quantum dots [J].
Guettinger, J. ;
Seif, J. ;
Stampfer, C. ;
Capelli, A. ;
Ensslin, K. ;
Ihn, T. .
PHYSICAL REVIEW B, 2011, 83 (16)
[12]   Charge detection in graphene quantum dots [J].
Guettinger, J. ;
Stampfer, C. ;
Hellmueller, S. ;
Molitor, F. ;
Ihn, T. ;
Ensslin, K. .
APPLIED PHYSICS LETTERS, 2008, 93 (21)
[13]   Counting statistics of single electron transport in a quantum dot [J].
Gustavsson, S ;
Leturcq, R ;
Simovic, B ;
Schleser, R ;
Ihn, T ;
Studerus, P ;
Ensslin, K ;
Driscoll, DC ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[14]   Electron Transport in Disordered Graphene Nanoribbons [J].
Han, Melinda Y. ;
Brant, Juliana C. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 104 (05)
[15]   Valley Subband Splitting in Bilayer Graphene Quantum Point Contacts [J].
Kraft, R. ;
Krainov, I. V. ;
Gall, V. ;
Dmitriev, A. P. ;
Krupke, R. ;
Gornyi, I. V. ;
Danneau, R. .
PHYSICAL REVIEW LETTERS, 2018, 121 (25)
[16]   Electrostatic confinement of electrons in graphene nanoribbons [J].
Liu, Xinglan ;
Oostinga, Jeroen B. ;
Morpurgo, Alberto F. ;
Vandersypen, Lieven M. K. .
PHYSICAL REVIEW B, 2009, 80 (12)
[17]   Asymmetry gap in the electronic band structure of bilayer graphene [J].
McCann, Edward .
PHYSICAL REVIEW B, 2006, 74 (16)
[18]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[19]   Controlling the electronic structure of bilayer graphene [J].
Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States ;
不详 ;
不详 .
Science, 2006, 5789 (951-954) :951-954
[20]   Gate-induced insulating state in bilayer graphene devices [J].
Oostinga, Jeroen B. ;
Heersche, Hubert B. ;
Liu, Xinglan ;
Morpurgo, Alberto F. ;
Vandersypen, Lieven M. K. .
NATURE MATERIALS, 2008, 7 (02) :151-157