Finite element simulation of inhomogeneous solar cells based on lock-in thermography and luminescence imaging

被引:21
作者
Fruehauf, F. [1 ]
Wong, J. [2 ]
Bauer, J. [1 ]
Breitenstein, O. [1 ]
机构
[1] Max Planck Inst Microstruct Phys, Halle, Germany
[2] Solar Energy Res Inst Singapore, Singapore, Singapore
关键词
Lock-in thermography; Electroluminescence imaging; Photoluminescence imaging; Device simulation; Contact resistance imaging; SERIES RESISTANCE; EFFICIENCY ANALYSIS; DIFFUSION LENGTH; PHOTOLUMINESCENCE;
D O I
10.1016/j.solmat.2016.12.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work presents a method to extract the spatial distributions of local two-diode parameters, contact resistance, grid resistance, and emitter resistance of a solar cell, based on spatial data obtained by lock-in thermography, 4-point probing, electroluminescence, and photoluminescence imaging. The extracted parameters are input into Griddler, a finite-element simulator, to calculate the cell plane voltage distributions as a test of the goodness of fit. This Griddler model then can be used to predict the cell properties under conditions not measured before, e.g. at different temperatures, biasing, and illumination conditions, and it can be used to evaluate the influence of certain defects on the cell efficiency by excluding them in the simulation.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
[31]   Illuminated lock-in thermography at different wavelengths for distinguishing shunts in top and bottom layers of tandem solar cells [J].
Straube, Hilmar ;
Siegloch, Max ;
Gerber, Andreas ;
Bauer, Jan ;
Breitenstein, Otwin .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 4, 2011, 8 (04) :1339-1341
[32]   A new measurement method of coatings thickness based on lock-in thermography [J].
Zhang, Jin-Yu ;
Meng, Xiang-bin ;
Ma, Yong-chao .
INFRARED PHYSICS & TECHNOLOGY, 2016, 76 :655-660
[33]   Imaging Physical Parameters of Pre-Breakdown Sites by Lock-in Thermography Techniques [J].
Breitenstein, O. ;
Bauer, J. ;
Wagner, J. -M. ;
Lotnyk, A. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (08) :679-685
[34]   High resolution saturation current density imaging at grain boundaries by lock-in thermography [J].
Rissland, S. ;
Breitenstein, O. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 104 :121-124
[35]   Design and Construction of an LED-Based Excitation Source for Lock-In Thermography [J].
Dahlberg, Patrick ;
Ziegeler, Nils J. ;
Nolte, Peter W. ;
Schweizer, Stefan .
APPLIED SCIENCES-BASEL, 2022, 12 (06)
[36]   High-Throughput Optimization of Magnetoresistance Materials Based on Lock-In Thermography [J].
Modak, Rajkumar ;
Hirai, Takamasa ;
Sakuraba, Yuya ;
Mitani, Seiji ;
Oyanagi, Koichi ;
Yamazaki, Takumi ;
Seki, Takeshi ;
Uchida, Ken-ichi .
ADVANCED PHYSICS RESEARCH, 2024, 3 (08)
[37]   Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography - Part I: Simulation [J].
Shrestha, Ranjit ;
Kim, Wontae .
INFRARED PHYSICS & TECHNOLOGY, 2017, 83 :124-131
[38]   Water distribution mapping in polymer electrolyte fuel cells using lock-in thermography [J].
Rasha, L. ;
Cho, J. I. S. ;
Neville, T. P. ;
Corredera, A. ;
Shearing, P. R. ;
Brett, D. J. L. .
JOURNAL OF POWER SOURCES, 2019, 440
[39]   Enhanced Infrared Imaging for Die-Level Fault Isolation Using Lock-In Thermography [J].
Sharma, Anjanashree M. R. ;
Jacobs, Kristof J. P. ;
Coenen, David ;
De Wolf, Ingrid .
JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2024, 24 (05) :2129-2141
[40]   Vignetting in luminescence imaging of solar cells [J].
Dost, Georg ;
Hoeffler, Hannes ;
Greulich, Johannes M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (10)