Finite element simulation of inhomogeneous solar cells based on lock-in thermography and luminescence imaging

被引:20
作者
Fruehauf, F. [1 ]
Wong, J. [2 ]
Bauer, J. [1 ]
Breitenstein, O. [1 ]
机构
[1] Max Planck Inst Microstruct Phys, Halle, Germany
[2] Solar Energy Res Inst Singapore, Singapore, Singapore
关键词
Lock-in thermography; Electroluminescence imaging; Photoluminescence imaging; Device simulation; Contact resistance imaging; SERIES RESISTANCE; EFFICIENCY ANALYSIS; DIFFUSION LENGTH; PHOTOLUMINESCENCE;
D O I
10.1016/j.solmat.2016.12.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work presents a method to extract the spatial distributions of local two-diode parameters, contact resistance, grid resistance, and emitter resistance of a solar cell, based on spatial data obtained by lock-in thermography, 4-point probing, electroluminescence, and photoluminescence imaging. The extracted parameters are input into Griddler, a finite-element simulator, to calculate the cell plane voltage distributions as a test of the goodness of fit. This Griddler model then can be used to predict the cell properties under conditions not measured before, e.g. at different temperatures, biasing, and illumination conditions, and it can be used to evaluate the influence of certain defects on the cell efficiency by excluding them in the simulation.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
[21]   LimoLIT - Light modulated lock-in thermography for solar cell examination [J].
Krauss, M ;
Pfengler, D ;
Vollheim, B ;
Mahler, G .
TM-TECHNISCHES MESSEN, 2006, 73 (02) :96-102
[22]   Lock-in carrierography non-destructive imaging of silicon wafers and silicon solar cells [J].
Song, Peng ;
Yang, Feng ;
Liu, Junyan ;
Mandelis, Andreas .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (18)
[23]   Quantitative Heterodyne Lock-in Carrierographic Imaging of Silicon Wafers and Solar Cells [J].
Sun, Qiming ;
Melnikov, Alexander ;
Mandelis, Andreas .
2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, :1860-1864
[24]   Quantitative description of dark current-voltage characteristics of multicrystalline silicon solar cells based on lock-in thermography measurements [J].
Breitenstein, Otwin ;
Khanna, Ankit ;
Warta, Wilhelm .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (09) :2159-2163
[25]   Estimating Thermal Material Properties Using Solar Loading Lock-in Thermography [J].
Klein, Samuel ;
Fernandes, Henrique ;
Herrmann, Hans-Georg .
APPLIED SCIENCES-BASEL, 2021, 11 (07)
[26]   Characterization of defects in encapsulated solar modules using infrared lock-in thermography [J].
Sanchez Carballido, Sergio ;
Melendez, Juan ;
Lopez, Fernando ;
Olias, Emilio .
RELIABILITY OF PHOTOVOLTAIC CELLS, MODULES, COMPONENTS, AND SYSTEMS VI, 2013, 8825
[27]   Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers [J].
Radevici, Ivan ;
Tiira, Jonna ;
Oksanen, Jani .
OPTICAL AND ELECTRONIC COOLING OF SOLIDS II, 2017, 10121
[28]   Defect detection with thermal imaging and phase shifting methods in lock-in thermography [J].
Kim, Wontae ;
Shrestha, Ranjit ;
Choi, Manyong .
13TH QUANTITATIVE INFRARED THERMOGRAPHY CONFERENCE, 2016, :391-396
[29]   A SIMPLE METHOD FOR DETERMINING A THICKNESS OF METAL BASED ON LOCK-IN THERMOGRAPHY [J].
Zrhaiba, A. ;
Balouki, A. ;
Elhassnaoui, A. ;
Yadir, S. ;
Halloua, H. ;
Sahnoun, S. .
SURFACE REVIEW AND LETTERS, 2020, 27 (02)
[30]   Dark Current - Voltage Characteristics and Lock-in Thermography Techniques as Diagnostic Tools for Monocrystalline Silicon Solar Cells [J].
Ibrahim, Ali .
INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2011, 1 (03) :60-65