Finite element simulation of inhomogeneous solar cells based on lock-in thermography and luminescence imaging

被引:20
|
作者
Fruehauf, F. [1 ]
Wong, J. [2 ]
Bauer, J. [1 ]
Breitenstein, O. [1 ]
机构
[1] Max Planck Inst Microstruct Phys, Halle, Germany
[2] Solar Energy Res Inst Singapore, Singapore, Singapore
关键词
Lock-in thermography; Electroluminescence imaging; Photoluminescence imaging; Device simulation; Contact resistance imaging; SERIES RESISTANCE; EFFICIENCY ANALYSIS; DIFFUSION LENGTH; PHOTOLUMINESCENCE;
D O I
10.1016/j.solmat.2016.12.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work presents a method to extract the spatial distributions of local two-diode parameters, contact resistance, grid resistance, and emitter resistance of a solar cell, based on spatial data obtained by lock-in thermography, 4-point probing, electroluminescence, and photoluminescence imaging. The extracted parameters are input into Griddler, a finite-element simulator, to calculate the cell plane voltage distributions as a test of the goodness of fit. This Griddler model then can be used to predict the cell properties under conditions not measured before, e.g. at different temperatures, biasing, and illumination conditions, and it can be used to evaluate the influence of certain defects on the cell efficiency by excluding them in the simulation.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [1] Can Luminescence Imaging Replace Lock-in Thermography on Solar Cells?
    Breitenstein, Otwin
    Bauer, Jan
    Bothe, Karsten
    Hinken, David
    Mueller, Jens
    Kwapil, Wolfram
    Schubert, Martin C.
    Warta, Wilhelm
    IEEE JOURNAL OF PHOTOVOLTAICS, 2011, 1 (02): : 159 - 167
  • [2] Series resistance imaging in solar cells by lock-in thermography
    Breitenstein, O
    Rakotoniaina, JP
    van der Heide, ASH
    Carstensen, J
    PROGRESS IN PHOTOVOLTAICS, 2005, 13 (08): : 645 - 660
  • [3] Luminescence based high resolution finite element simulation of inhomogeneous solar cells
    Fruehauf, F.
    Wong, J.
    Breitenstein, O.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 189 : 133 - 137
  • [4] Local efficiency analysis of solar cells based on lock-in thermography
    Breitenstein, Otwin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 107 : 381 - 389
  • [5] Alternative luminescence image evaluation - Comparison with lock-in thermography
    Breitenstein, O.
    Fruehauf, F.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 173 : 72 - 79
  • [6] Lock-in thermography for investigating solar cells and materials
    Breitenstein, Otwin
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2010, 7 (02) : 147 - 165
  • [7] An empirical method for imaging the short circuit current density in silicon solar cells based on dark lock-in thermography
    Breitenstein, Otwin
    Fertig, Fabian
    Bauer, Jan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 : 406 - 410
  • [8] Lock-in thermography with depth resolution on silicon solar cells
    Breitenstein, O.
    Straube, H.
    Iwig, K.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 : 66 - 74
  • [9] Organic solar cells characterized by dark lock-in thermography
    Bachmann, Jonas
    Buerhop-Lutz, Claudia
    Deibel, Carsten
    Riedel, Ingo
    Hoppe, Harald
    Brabec, Christoph J.
    Dyakonov, Vladimir
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (04) : 642 - 647
  • [10] A novel experimental procedure for lock-in thermography on solar cells
    Vieira, Thiago M.
    Santana, ezio C.
    Souza, Luiz F. S.
    Silva, Renan O.
    Ferreira, Tarso, V
    Riffel, Douglas B.
    AIMS ENERGY, 2023, 11 (03) : 503 - 521