Modeling of piezoelectric stack actuators considering bonding layers

被引:16
作者
Zhu, Wei [1 ]
Chen, Gangli [1 ]
Rui, Xiaoting [1 ]
机构
[1] Nanjing Univ Sci & Technol, Inst Launch Dynam, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric stack actuator; electromechanical model; bonding layer; hysteresis; transfer matrix method for multibody system; TRACKING CONTROL; HYSTERESIS COMPENSATION; IDENTIFICATION; VIBRATION;
D O I
10.1177/1045389X15575083
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to achieve large displacement output of piezoelectric actuators, piezoelectric stack actuators are realized by mechanically layering or stacking multi-chip piezoelectric wafers in series and electronically connecting electrodes in parallel. Experimental investigations show that different layering or stacking processes greatly affect the dynamic performances of piezoelectric stack actuators. We consider that a linear force and a hysteretic force will be generated by all piezoelectric wafers under the applied voltage to a piezoelectric stack actuator, and the total force will result in the forced vibration of the system consisted of multi-chip piezoelectric wafers and bonding layers. Based on the above-mentioned opinion, an electromechanical model is put forward using a Bouc-Wen hysteresis operator to model the hysteretic force and the transfer matrix method for multibody system to establish the dynamic equation of the piezoelectric stack actuator. This research shows that (1) the layering or stacking processes do not affect the hysteretic characteristics of piezoelectric stack actuators and (2) the layering or stacking processes change the dynamic performance of piezoelectric stack actuators by changing the parameters of the bonding layers. These two conclusions are consistent with the experimental results.
引用
收藏
页码:2418 / 2427
页数:10
相关论文
共 24 条
[1]   Modeling piezoelectric actuators [J].
Adriaens, HJMTA ;
de Koning, WL ;
Banning, R .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2000, 5 (04) :331-341
[2]   Nonlinear hysteresis compensation of piezoelectric ceramic actuators [J].
Chonan, S ;
Jiang, ZW ;
Yamamoto, T .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1996, 7 (02) :150-156
[3]   High-speed scanning of piezo-probes for nano-fabrication [J].
Croft, D ;
McAllister, D ;
Devasia, S .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (03) :617-622
[4]   A survey of control issues in nanopositioning [J].
Devasia, Santosh ;
Eleftheriou, Evangelos ;
Moheimani, S. O. Reza .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (05) :802-823
[5]   Design of a linear-motion dual-stage actuation system for precision control [J].
Dong, W. ;
Tang, J. ;
ElDeeb, Y. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (09)
[6]   Modeling piezoelectric stack actuators for control of micromanipulation [J].
Goldfarb, M ;
Celanovic, N .
IEEE CONTROL SYSTEMS MAGAZINE, 1997, 17 (03) :69-79
[7]   Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table [J].
Huang, Shiuh-Jer ;
Chiu, Chun-Ming .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2009, 31 (02) :181-203
[8]   A constitutive model for ferroelectric PZT ceramics under uniaxial loading [J].
Kamlah, M ;
Jiang, Q .
SMART MATERIALS AND STRUCTURES, 1999, 8 (04) :441-459
[9]   Modeling piezoceramic transducer hysteresis in the structural vibration control problem [J].
Lee, SH ;
Royston, TJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 108 (06) :2843-2855
[10]   Friction models incorporating thermal effects in highly precision actuators [J].
Li, J. W. ;
Chen, X. B. ;
An, Q. ;
Tu, S. D. ;
Zhang, W. J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (04)