On Ramanujan's inequalities for exp(k)

被引:10
作者
Alzer, H
机构
[1] D-51545 Waldbröl
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2004年 / 69卷
关键词
D O I
10.1112/S0024610704005253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ramanujan claimed in his first letter to Hardy (16 January 1913) that 1/2e(k) - Sigma(v=o)(k-1) k(v)/v! = k(k/)k! (1/3 + 4/135(k+theta(k))) (k = 1, 2, ...), where theta(k) lies between 2/21 and 8/45. This conjecture was proved in 1995 by Flajolet et al. The paper establishes the following refinement. 1/2e(k) - (Sigma)(k-1)(v=0) k(v)/v! = k(k/)k! (1/3 + 4/135k - 8/2835(k + theta*(k))(2)) (k = 1, 2, ...), where -1/3 < theta*(k) less than or equal to -1 + 4/root21(368 - 135e) = -0.14074... Both bounds for theta*(k) are sharp.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 1962, COLLECTED PAPERS
[2]  
Berndt B. C., 1989, Ramanujan's Notebooks
[3]  
Berndt B.C., 1995, RAMANUJAN LETT COMME
[4]  
BERNDT BC, 1999, CONT MATH, V236, P15
[5]  
Bracken P., 1998, COMMENT MATH U CAROL, V39, P765
[6]  
CHENG TT, 1949, B AM MATH SOC, V55, P396
[7]   ON RAMANUJANS Q-FUNCTION [J].
FLAJOLET, P ;
GRABNER, PJ ;
KIRSCHENHOFER, P ;
PRODINGER, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 58 (01) :103-116
[8]  
Hardy G.H., 1952, INEQUALITIES
[9]  
KARAMATA J, 1960, J INDIAN MATH SOC, V24, P343
[10]   THE REAL ZEROS OF THE BERNOULLI POLYNOMIALS [J].
LEEMING, DJ .
JOURNAL OF APPROXIMATION THEORY, 1989, 58 (02) :124-150