Representation by triples of algebras with an MV-retract

被引:11
作者
Busaniche, Manuela [1 ]
Andres Marcos, Miguel [1 ]
Ugolini, Sara [2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, FIQ, Inst Matemat Aplicada Litoral, UNL, Santa Fe, Argentina
[2] Univ Pisa, Dept Comp Sci, Largo B Pontecorvo 3, I-56127 Pisa, Italy
关键词
Residuated lattices; Rotation; Categorical equivalence; LATTICES;
D O I
10.1016/j.fss.2018.10.024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the notion of generalized rotation of a residuated lattice and characterize the varieties of bounded residuated lattices they generate, which we name MVRn. These algebras have a retraction onto a hyperarchimedean MV-algebra. Then we characterize algebras in MVRn as triples made of an MV-algebra, a residuated lattice with a nucleus, and an operator joining them. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 102
页数:21
相关论文
共 24 条
[11]   Varieties of Commutative Integral Bounded Residuated Lattices Admitting a Boolean Retraction Term [J].
Cignoli, Roberto ;
Torrens, Antoni .
STUDIA LOGICA, 2012, 100 (06) :1107-1136
[12]  
Esteva F, 2003, J LOGIC COMPUT, V13, P531, DOI 10.1093/logcom/13.4.532
[13]  
Galatos N., 2004, Studia Logica, V77, P181
[14]  
Galatos N., 2007, Residuated Lattices: An Algebraic Glimpse at Substructural Logics
[15]  
Grigolia R., 1977, Selected Papers on ukasiewicz Sentential Calculi, P81
[16]   On the structure of rotation-invariant semigroups [J].
Jenei, S .
ARCHIVE FOR MATHEMATICAL LOGIC, 2003, 42 (05) :489-514
[17]  
Jenei S., 2000, J APPL NONCLASSICAL, V10, P83
[18]  
Kowalski T., RESIDUATED LATTICES
[19]  
MACLANE S, 1978, CATEGORIES WORKING M
[20]   A Categorical Equivalence for Product Algebras [J].
Montagna, Franco ;
Ugolini, Sara .
STUDIA LOGICA, 2015, 103 (02) :345-373