Study on the dynamical behaviors of a two-dimensional discrete system

被引:5
作者
Gao, Yinghui [1 ,2 ,3 ]
Liu, Bing [4 ]
机构
[1] Beihang Univ, Dept Math, Beijing 100083, Peoples R China
[2] Beihang Univ, Key Lab Math Informat & Behav Semant, Beijing, Peoples R China
[3] Peking Univ, Minist Educ, Beijing, Peoples R China
[4] Anshan Normal Univ, Dept Math, Anshan 114005, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Ushiki map; Bifurcation; Marotto chaos; Intermittency; Crisis; CHAOTIC ATTRACTOR TRANSITIONS; SNAP-BACK-REPELLER; UNIVERSALITY;
D O I
10.1016/j.na.2008.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized Ushiki map is investigated. It is theoretically proven that there are transcritical and flip bifurcations and there exists a chaotic phenomenon in the sense of Marotto. And numerical simulations not only show the consistency with the theoretical analysis but also exhibit the complex dynamical behaviors including the period-6, 5, 3 windows, intermittency mechanics, attractor merging crisis and boundary crisis. The computation of Lyapunov exponents conforms the dynamical behaviors. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4209 / 4216
页数:8
相关论文
共 14 条
[1]   Dynamical properties of discrete Lotka-Volterra equations [J].
Blackmore, D ;
Chen, J ;
Perez, J ;
Savescu, M .
CHAOS SOLITONS & FRACTALS, 2001, 12 (13) :2553-2568
[2]   PREDICTING AND CHARACTERIZING DATA SEQUENCES FROM STRUCTURE-VARIABLE SYSTEMS [J].
FANG, HP ;
CAO, LY .
PHYSICAL REVIEW E, 1995, 51 (06) :6254-6257
[3]  
Guckenheimer J., 1997, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, V5nd edn
[4]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[5]   On the mathematical clarification of the snap-back-repeller in high-dimensional systems and chaos in a discrete neural network model [J].
Lin, W ;
Ruan, J ;
Zhao, WR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :1129-1139
[6]   On redefining a snap-back repeller [J].
Marotto, FR .
CHAOS SOLITONS & FRACTALS, 2005, 25 (01) :25-28
[7]   SNAP-BACK REPELLERS IMPLY CHAOS IN RN [J].
MAROTTO, FR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 63 (01) :199-223
[8]  
MATANO H, 1980, LECT NOTES NUMERICAL, V2, P1
[9]  
Medio A., 2001, Nonlinear Dynamics: A Primer, DOI 10.1017/CBO9780511754050
[10]  
Ott E., 2002, CHAOS DYNAMICAL SYST