Counting Gallai 3-colorings of complete graphs

被引:3
作者
Bastos, Josefran de Oliveira [1 ]
Benevides, Fabricio Siqueira [2 ]
Mota, Guilherme Oliveira [3 ]
Sau, Ignasi [4 ]
机构
[1] Univ Fed Ceara, Engn Comp, Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
[3] Univ Fed ABC, Ctr Matemat Comp & Cognicao, Santo Andre, Brazil
[4] Univ Montpellier, CNRS, LIRMM, Montpellier, France
基金
巴西圣保罗研究基金会;
关键词
Gallai colorings; Rainbow triangles; Complete graphs; Counting; EDGE-COLORINGS; NUMBER; SETS;
D O I
10.1016/j.disc.2019.05.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge coloring of the n-vertex complete graph K-n is a Gallai coloring if it does not contain any rainbow triangle, that is, a triangle whose edges are colored with three distinct colors. We prove that the number of Gallai colorings of K-n with at most three colors is at most 7(n + 1)2((n2)), which improves the best known upper bound of 3/2(n - 1)! . 2((n-12)) in Benevides et al. (2017). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2618 / 2631
页数:14
相关论文
共 31 条
  • [1] Allen P., 2016, ARXIV161200622
  • [2] The number of edge colorings with no monochromatic cliques
    Alon, N
    Balogh, J
    Keevash, P
    Sudakov, B
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 273 - 288
  • [3] Counting sum-free sets in abelian groups
    Alon, Noga
    Balogh, Jozsef
    Morris, Robert
    Samotij, Wojciech
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 309 - 344
  • [4] Alves R. G., 2015, ARXIV150904638
  • [5] [Anonymous], 1996, SZEMEREDIS REGULARIT
  • [6] The Number of Subsets of Integers with No k-Term Arithmetic Progression
    Balogh, Jozsef
    Liu, Hong
    Sharifzadeh, Maryam
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6168 - 6186
  • [7] THE NUMBER OF MAXIMAL SUM-FREE SUBSETS OF INTEGERS
    Balogh, Jozsef
    Liu, Hong
    Sharifzadeh, Maryam
    Treglown, Andrew
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) : 4713 - 4721
  • [8] Balogh J, 2015, J AM MATH SOC, V28, P669
  • [9] The number of the maximal triangle-free graphs
    Balogh, Jozsef
    Petrickova, Sarka
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1003 - 1006
  • [10] The number of K m,m -free graphs
    Balogh, Jozsef
    Samotij, Wojciech
    [J]. COMBINATORICA, 2011, 31 (02) : 131 - 150