On Type I Blow-Up Formation for the Critical NLW

被引:5
作者
Krieger, Joachim [1 ]
Wong, Willie [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
关键词
Blowup; Critical wave equation; Hyperbolic dynamics; Invariant manifold; Scattering; Stability;
D O I
10.1080/03605302.2013.861847
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a suitable concept of weak evolution in the context of the radial quintic focusing semilinear wave equation on R3+1, that is adapted to continuation past type II singularities. We show that the weak extension leads to type I singularity formation for initial data corresponding to: (i) the Kenig-Merle blow-up solutions with initial energy below the ground state and (ii) the Krieger-Nakanishi-Schlag blow-up solutions sitting initially near and "above" the ground state static solution.
引用
收藏
页码:1718 / 1728
页数:11
相关论文
共 15 条
[1]  
Donninger R., ARXIV12013258V1
[2]  
Donninger R., 2012, ARXIV12077046
[3]  
Duyckaerts T., ARXIV12014986
[4]  
Duyckaerts T., ARXIV12040031
[5]   Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (05) :1389-1454
[6]   Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :533-599
[7]   Dynamics of Threshold Solutions for Energy-Critical Wave Equation [J].
Duyckaerts, Thomas ;
Merle, Frank .
INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2008,
[8]   Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation [J].
Kenig, Carlos E. ;
Merle, Frank .
ACTA MATHEMATICA, 2008, 201 (02) :147-212
[9]  
Krieger J, 2007, AM J MATH, V129, P843
[10]  
Krieger J., ARXIV10103799