The Interfacial Reaction at ITO Back Contact in Kesterite CZTSSe Bifacial Solar Cells

被引:45
作者
Ge, Jie [1 ,2 ,3 ]
Chu, Junhao [1 ,3 ,4 ]
Jiang, Jinchun [1 ,3 ]
Yan, Yanfa [2 ]
Yang, Pingxiong [1 ]
机构
[1] E China Normal Univ, Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[2] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA
[3] Shanghai Ctr Photovolta SCPV, Shanghai 200081, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200081, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
kesterite bifacial solar cell; ITO back contact; interfacial reaction; indium diffusion; SnO2 interfacial layer; CONDUCTING OXIDE BACK; THIN-FILM; CU2ZNSNSE4; SN; PERFORMANCE; ZN; CU;
D O I
10.1021/acssuschemeng.5b00962
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The synthesis route based on co-electroplating of copper, zinc, tin, and chalcogen precursor plus post-chalcogenization demonstrates the tremendous potential to realize industrial manufacture of earth-abundant kesterite materials for sustainable photovoltaics. Exploration of appropriate annealing temperature is significant to gain insight into the crystallization of kesterite solar materials on the back contacts based on transparent conducting oxides in bifacial device. The Cu2ZnSn(S-x, Se1-x)(4) (CZTSSe) absorber films have been fabricated by post-selenizing co-electroplated metal-sulfide precursors on ITO substrate at 500, 525, and 550 degrees C. Experimental proof, including electron microscopies, X-ray diffraction, optical transmission/reflection spectra, polarized Raman, and IR techniques, is presented for the interfacial reaction between the ITO back contact and CZTSSe absorber. This reaction contributes to substitutional diffusion of In into CZTSSe (CZTISSe) to a considerable extent and formation of a SnO2 interfacial layer when the temperature is higher than 500 degrees C. In incorporation does not much change the optical absorption, band gap, and phonon spectra of CZTSSe; whereas, it leads to lattice expansion more or less. The bifacial kesterite solar devices are successfully fabricated, and the device performance is analyzed and discussed.
引用
收藏
页码:3043 / 3052
页数:10
相关论文
共 49 条
[1]  
[Anonymous], COELECTROPLATED KEST
[2]  
[Anonymous], COELECTROPLATED CU2Z
[3]  
[Anonymous], 12 EFFICIENCY CU2ZNS
[4]  
[Anonymous], J PHYS D
[5]  
[Anonymous], EFFICIENCY IMPROVEME
[6]   Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency [J].
Bag, Santanu ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Zhu, Yu ;
Todorov, Teodor K. ;
Mitzi, David B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7060-7065
[7]   Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell [J].
Barkhouse, D. Aaron R. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Todorov, Teodor K. ;
Mitzi, David B. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :6-11
[8]   KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells [J].
Buffiere, Marie ;
Brammertz, Guy ;
Sahayaraj, Sylvester ;
Batuk, Maria ;
Khelifi, Samira ;
Mangin, Denis ;
El Mel, Abdel-Aziz ;
Arzel, Ludovic ;
Hadermann, Joke ;
Meuris, Marc ;
Poortmans, Jef .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) :14690-14698
[9]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[10]   Electrodeposition of kesterite thin films for photovoltaic applications: Quo vadis? [J].
Colombara, D. ;
Crossay, A. ;
Vauche, L. ;
Jaime, S. ;
Arasimowicz, M. ;
Grand, P. -P. ;
Dale, P. J. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (01) :88-102