Biochemical Characterization of Photosystem I-Associated Light-Harvesting Complexes I and II Isolated from State 2 Cells of Chlamydomonas reinhardtii

被引:32
作者
Takahashi, Hiroko [1 ]
Okamuro, Akira [1 ]
Minagawa, Jun [2 ]
Takahashi, Yuichiro [1 ,3 ]
机构
[1] Okayama Univ, Grad Sch Nat Sci & Technol, Kita Ku, Okayama 7008530, Japan
[2] Natl Inst Nat Sci, Natl Inst Basic Biol, Okazaki, Aichi 4448585, Japan
[3] Japan Sci & Technol Agcy, CREST, Tokyo, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Antenna complex; Isotope labeling; Phosphorylation; Photosystem I; State transitions; POLYACRYLAMIDE-GEL-ELECTROPHORESIS; CYTOCHROME B(6)F COMPLEX; CYCLIC ELECTRON FLOW; PROTEIN-PHOSPHORYLATION; SUPRAMOLECULAR ORGANIZATION; PHOTOSYNTHETIC ACCLIMATION; ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; BINDING-PROTEINS; TRANSITIONS;
D O I
10.1093/pcp/pcu071
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Two photosystems, PSI and PSII, drive electron transfer in series for oxygenic photosynthesis using light energy. To balance the activity of the two photosystems under varying light conditions, mobile antenna complexes, light-harvesting complex IIs (LHCIIs), shuttle between the two photosystems during state transitions. PSI forms a complex consisting of PSI core and its peripheral light-harvesting complex (LHCI) in plants and algae. In a previous study, we isolated a PSI-LHCI-LHCII supercomplex containing both LHCI and LHCII from state 2 cells of Chlamydomonas reinhardtii. In the present study, we isolated a PSI-LHCI-LHCII supercomplex associating with more LHCII complexes under a further optimized protocol. We determined its antenna size by three independent methods and revealed that the associated LHCIIs increased the antenna size by about 70 Chls and transferred light energy to the PSI core. Uniform labeling of total cellular proteins with C-14 indicated that the PSI-LHCI-LHCII supercomplex contains 1.85 copies of LhcbM5 and CP29 and 1.29 copies of CP26. PSI-LHCI-LHCII also stably bound 0.4 copy of ferredoxin-NADP(+) oxidoreductase (FNR) that catalyzes light-induced electron transfer from PSI to NADP(+) in the presence of ferredoxin. We discuss the possible organization of these LHCIIs in the PSI-LHCI-LHCII supercomplex.
引用
收藏
页码:1437 / 1449
页数:13
相关论文
共 64 条
[1]   CHLOROPLAST PROTEIN-PHOSPHORYLATION COUPLES PLASTOQUINONE REDOX STATE TO DISTRIBUTION OF EXCITATION-ENERGY BETWEEN PHOTOSYSTEMS [J].
ALLEN, JF ;
BENNETT, J ;
STEINBACK, KE ;
ARNTZEN, CJ .
NATURE, 1981, 291 (5810) :25-29
[2]   Molecular recognition in thylakoid structure and function [J].
Allen, JF ;
Forsberg, J .
TRENDS IN PLANT SCIENCE, 2001, 6 (07) :317-326
[3]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[4]   The structure of a plant photosystem I supercomplex at 3.4 Å resolution [J].
Amunts, Alexey ;
Drory, Omri ;
Nelson, Nathan .
NATURE, 2007, 447 (7140) :58-63
[5]   State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 [J].
Bellafiore, S ;
Barneche, F ;
Peltier, G ;
Rochaix, JD .
NATURE, 2005, 433 (7028) :892-895
[6]   Crystal structure of plant photosystem I [J].
Ben-Shem, A ;
Frolow, F ;
Nelson, N .
NATURE, 2003, 426 (6967) :630-635
[7]  
Boekema Egbert J., 2006, V24, P41
[8]   FLUORESCENCE AND OXYGEN EVOLUTION FROM CHLORELLA PYRENOIDOSA [J].
BONAVENTURA, C ;
MYERS, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 189 (03) :366-+
[9]   THYLAKOID MEMBRANE POLYPEPTIDES OF CHLAMYDOMONAS-REINHARDTII - WILD-TYPE AND MUTANT STRAINS DEFICIENT IN PHOTOSYSTEM 2 REACTION CENTER [J].
CHUA, NH ;
BENNOUN, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (06) :2175-2179
[10]   Supramolecular organization of thylakoid membrane proteins in green plants [J].
Dekker, JP ;
Boekema, EJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2005, 1706 (1-2) :12-39