Quantification of biological age as a determinant of age-related diseases in the Rotterdam Study: a structural equation modeling approach

被引:29
作者
Waziry, Reem [1 ,2 ]
Gras, Luuk [3 ]
Sedaghat, Sanaz [2 ,4 ]
Tiemeier, Henning [1 ,2 ,5 ]
Weverling, Gerrit J. [3 ]
Ghanbari, Mohsen [2 ]
Klap, Jaco [3 ]
de Wolf, Frank [3 ,8 ]
Hofman, Albert [1 ,2 ]
Ikram, M. Arfan [2 ,6 ]
Goudsmit, Jaap [1 ,7 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, 677 Huntington Ave, Boston, MA 02115 USA
[2] Erasmus MC, Dept Epidemiol, POB 2040, NL-3000 CA Rotterdam, Netherlands
[3] Janssen Pharmaceut Co Johnson & Johnson, Janssen Prevent Ctr, Leiden, Netherlands
[4] Northwestern Univ, Feinberg Sch Med, Dept Prevent Med, Chicago, IL 60611 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Social & Behav Sci, Boston, MA 02115 USA
[6] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[7] Univ Amsterdam, Amsterdam Neurosci, Acad Med Ctr, Amsterdam, Netherlands
[8] Imperial Coll, Sch Publ Hlth, Dept Infect Dis Epidemiol, London, England
关键词
Biological age; Morbidity; Mortality; Biologically young; Elderly; INTERVENTIONS; BIOMARKERS; MORTALITY; ADULTS; INDEX; RAT;
D O I
10.1007/s10654-019-00497-3
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Chronological age alone is not a sufficient measure of the true physiological state of the body. The aims of the present study were to: (1) quantify biological age based on a physiological biomarker composite model; (2) and evaluate its association with death and age-related disease onset in the setting of an elderly population. Using structural equation modeling we computed biological age for 1699 individuals recruited from the first and second waves of the Rotterdam study. The algorithm included nine physiological parameters (c-reactive protein, creatinine, albumin, total cholesterol, cytomegalovirus optical density, urea nitrogen, alkaline phosphatase, forced expiratory volume and systolic blood pressure). We assessed the association between biological age, all-cause mortality, all-cause morbidity and specific age-related diseases over a median follow-up of 11years. Biological age, compared to chronological age or the traditional biomarkers of age-related diseases, showed a stronger association with all-cause mortality (HR 1.15 vs. 1.13 and 1.10), all-cause morbidity (HR 1.06 vs. 1.05 and 1.03), stroke (HR 1.17 vs. 1.08 and 1.04), cancer (HR 1.07 vs. 1.04 and 1.02) and diabetes mellitus (HR 1.12 vs. 1.01 and 0.98). Individuals who were biologically younger exhibited a healthier life-style as reflected in their lower BMI (P<0.001) and lower incidence of stroke (P<0.001), cancer (P<0.01) and diabetes mellitus (P=0.02). Collectively, our findings suggest that biological age based on the biomarker composite model of nine physiological parameters is a useful construct to assess individuals 65years and older at increased risk for specific age-related diseases.
引用
收藏
页码:793 / 799
页数:7
相关论文
共 32 条
[1]   Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters [J].
Bae, Chul-Young ;
Kang, Young Gon ;
Kim, Sehyun ;
Cho, Chooyon ;
Kang, Hee Cheol ;
Yu, Byung Yeon ;
Lee, Sang-Wha ;
Cho, Kyung Hee ;
Lee, Duk Chul ;
Lee, Kyurae ;
Kim, Jong Sun ;
Shin, Kyung Kyun .
ARCHIVES OF GERONTOLOGY AND GERIATRICS, 2008, 47 (02) :253-265
[2]   Fetal origins of adult disease:: strength of effects and biological basis [J].
Barker, DJP ;
Eriksson, JG ;
Forsén, T ;
Osmond, C .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2002, 31 (06) :1235-1239
[3]   The place of genetics in ageing research [J].
Barzilai, Nir ;
Guarente, Leonard ;
Kirkwood, Thomas B. L. ;
Partridge, Linda ;
Rando, Thomas A. ;
Slagboom, P. Eline .
NATURE REVIEWS GENETICS, 2012, 13 (08) :589-594
[4]   Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? [J].
Belsky, Daniel W. ;
Moffitt, Terrie E. ;
Cohen, Alan A. ;
Corcoran, David L. ;
Levine, Morgan E. ;
Prinz, Joseph A. ;
Schaefer, Jonathan ;
Sugden, Karen ;
Williams, Benjamin ;
Poulton, Richie ;
Caspi, Avshalom .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (06) :1220-1230
[5]   Quantification of biological aging in young adults [J].
Belsky, Daniel W. ;
Caspi, Avshalom ;
Houts, Renate ;
Cohen, Harvey J. ;
Corcoran, David L. ;
Danese, Andrea ;
Harrington, HonaLee ;
Israel, Salomon ;
Levine, Morgan E. ;
Schaefer, Jonathan D. ;
Sugden, Karen ;
Williams, Ben ;
Yashin, Anatoli I. ;
Poulton, Richie ;
Moffitt, Terrie E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (30) :E4104-E4110
[6]   Advances in Geroscience: Impact on Healthspan and Chronic Disease [J].
Burch, John B. ;
Augustine, Alison Deckhut ;
Frieden, Leslie A. ;
Hadley, Evan ;
Howcroft, T. Kevin ;
Johnson, Ron ;
Khalsa, Partap S. ;
Kohanski, Ronald A. ;
Li, Xiao Ling ;
Macchiarini, Francesca ;
Niederehe, George ;
Oh, Young S. ;
Pawlyk, Aaron C. ;
Rodriguez, Henry ;
Rowland, Julia H. ;
Shen, Grace L. ;
Sierra, Felipe ;
Wise, Bradley C. .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2014, 69 :S1-S3
[7]  
Centers for Disease Control and Prevention, 1976, NAT HLTH NUTR EX SUR
[8]  
COMFORT A, 1969, LANCET, V2, P1411
[9]   BIOMARKERS RELATED TO AGING IN HUMAN POPULATIONS [J].
Crimmins, Eileen ;
Vasunilashorn, Sarinnapha ;
Kim, Jung Ki ;
Alley, Dawn .
ADVANCES IN CLINICAL CHEMISTRY, VOL 46, 2008, 46 :161-216
[10]   The Search for Antiaging Interventions: From Elixirs to Fasting Regimens [J].
de Cabo, Rafael ;
Carmona-Gutierrez, Didac ;
Bernier, Michel ;
Hall, Michael N. ;
Madeo, Frank .
CELL, 2014, 157 (07) :1515-1526