Strong majorization entropic uncertainty relations

被引:131
作者
Rudnicki, Lukasz [1 ,2 ]
Puchala, Zbigniew [3 ,4 ]
Zyczkowski, Karol [2 ,4 ]
机构
[1] Univ Freiburg, Freiburg Inst Adv Studies, Albertstr 19, D-79104 Freiburg, Germany
[2] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
[3] Polish Acad Sci, Inst Theoret & Appl Informat, PL-44100 Gliwice, Poland
[4] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 05期
关键词
PRINCIPLE;
D O I
10.1103/PhysRevA.89.052115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze entropic uncertainty relations in a finite-dimensional Hilbert space and derive several strong bounds for the sum of two entropies obtained in projective measurements with respect to any two orthogonal bases. We improve the recent bounds by Coles and Piani [P. Coles and M. Piani, Phys. Rev. A 89, 022112 (2014)], which are known to be stronger than the well-known result of Maassen and Uffink [ H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)]. Furthermore, we find a bound based on majorization techniques, which also happens to be stronger than the recent results involving the largest singular values of submatrices of the unitary matrix connecting both bases. The first set of bounds gives better results for unitary matrices close to the Fourier matrix, while the second one provides a significant improvement in the opposite sectors. Some results derived admit generalization to arbitrary mixed states, so that corresponding bounds are increased by the von Neumann entropy of the measured state. The majorization approach is finally extended to the case of several measurements.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Asymptotic entropic uncertainty relations [J].
Adamczak, Radoslaw ;
Latala, Rafal ;
Puchala, Zbigniew ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[2]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[3]  
Bialynicki-Birula I., 2011, ENTROPIC UNCERTAINTY, P1, DOI DOI 10.1007/978-90-481-3890-6-1
[4]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[5]   Collision entropy and optimal uncertainty [J].
Bosyk, G. M. ;
Portesi, M. ;
Plastino, A. .
PHYSICAL REVIEW A, 2012, 85 (01)
[6]   Comment on "Improved bounds on entropic uncertainty relations" [J].
Bosyk, G. M. ;
Portesi, M. ;
Plastino, A. .
PHYSICAL REVIEW A, 2011, 84 (05)
[7]   Improved entropic uncertainty relations and information exclusion relations [J].
Coles, Patrick J. ;
Piani, Marco .
PHYSICAL REVIEW A, 2014, 89 (02)
[8]   Information-theoretic treatment of tripartite systems and quantum channels [J].
Coles, Patrick J. ;
Yu, Li ;
Gheorghiu, Vlad ;
Griffiths, Robert B. .
PHYSICAL REVIEW A, 2011, 83 (06)
[9]   Improved bounds on entropic uncertainty relations [J].
de Vicente, Julio I. ;
Sanchez-Ruiz, Jorge .
PHYSICAL REVIEW A, 2008, 77 (04)
[10]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633