Immune-based algorithms for dynamic optimization

被引:50
作者
Trojanowski, Krzysztof [1 ]
Wierzchon, Slawomir T. [1 ]
机构
[1] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
关键词
Clonal selection; Heuristic optimization; Dynamic optimization; MUTATIONS; NETWORKS;
D O I
10.1016/j.ins.2008.11.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main problem with biologically inspired algorithms (like evolutionary algorithms or particle swarm optimization) when applied to dynamic optimization is to force their readiness for continuous search for new optima occurring in changing locations. Immune-based algorithm, being an instance of an algorithm that adapt by innovation seem to be a perfect candidate for continuous exploration of a search space. In this paper we describe various implementations of the immune principles and we compare these instantiations on complex environments. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1495 / 1515
页数:21
相关论文
共 68 条
[1]  
ANDREWS P, JAVA VERSION OPT AIN
[2]  
[Anonymous], 1966, Artificial_Intelligence_Through_Simulated Evolution
[3]  
[Anonymous], 2004, NONLINEAR OPTICS TEL, DOI DOI 10.1007/978-3-662-08996-5
[4]  
BERSINI H, 1991, LECT NOTES COMPUT SC, V496, P343
[5]   Multiswarms, exclusion, and anti-convergence in dynamic environments [J].
Blackwell, Tim ;
Branke, Juergen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (04) :459-472
[6]   Nature's way of optimizing [J].
Boettcher, S ;
Percus, A .
ARTIFICIAL INTELLIGENCE, 2000, 119 (1-2) :275-286
[7]  
BOHACHEVSKY IO, 1986, TECHNOMETRICS, V28, P209
[8]  
Branke J., 2002, EVOLUTIONARY OPTIMIZ
[9]  
Branke J., 1999, P IEEE C EVOLUTIONAR, P1875, DOI DOI 10.1109/CEC.1999.785502
[10]  
Branke J, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P1433