The imaginary part of the high-harmonic cutoff

被引:15
作者
Pisanty, Emilio [1 ]
Ciappina, Marcelo F. [1 ]
Lewenstein, Maciej [1 ,2 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
来源
JOURNAL OF PHYSICS-PHOTONICS | 2020年 / 2卷 / 03期
关键词
high-harmonic generation; strong-field approximation; strong-field physics; quantum orbits; asymptotic analysis; coalescing saddles; caustics; GENERATION; POLARIZATION; FIELD; ORBITS; PULSES; PHASE;
D O I
10.1088/2515-7647/ab8f1e
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-harmonic generation-the emission of high-frequency radiation by the ionization and subsequent recombination of an atomic electron driven by a strong laser field-is widely understood using a quasiclassical trajectory formalism, derived from a saddle-point approximation, where each saddle corresponds to a complex-valued trajectory whose recombination contributes to the harmonic emission. However, the classification of these saddle points into individual quantum orbits remains a high-friction part of the formalism. Here we present a scheme to classify these trajectories, based on a natural identification of the (complex) time that corresponds to the harmonic cutoff. This identification also provides a natural complex value for the cutoff energy, whose imaginary part controls the strength of quantum-path interference between the quantum orbits that meet at the cutoff. Our construction gives an efficient method to evaluate the location and brightness of the cutoff for a wide class of driver waveforms by solving a single saddle-point equation. It also allows us to explore the intricate topologies of the Riemann surfaces formed by the quantum orbits induced by nontrivial waveforms.
引用
收藏
页数:27
相关论文
共 78 条
[1]   Symphony on strong field approximation [J].
Amini, Kasra ;
Biegert, Jens ;
Calegari, Francesca ;
Chacon, Alexis ;
Ciappina, Marcelo F. ;
Dauphin, Alexandre ;
Efimov, Dmitry K. ;
De Morisson Faria, Carla Figueira ;
Giergiel, Krzysztof ;
Gniewek, Piotr ;
Landsman, Alexandra S. ;
Lesiuk, Michal ;
Mandrysz, Michal ;
Maxwell, Andrew S. ;
Moszynski, Robert ;
Ortmann, Lisa ;
Antonio Perez-Hernandez, Jose ;
Picon, Antonio ;
Pisanty, Emilio ;
Prauzner-Bechcicki, Jakub ;
Sacha, Krzysztof ;
Suarez, Noslen ;
Zair, Amelle ;
Zakrzewski, Jakub ;
Lewenstein, Maciej .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (11)
[2]   Attosecond pulse shaping using partial phase matching [J].
Austin, Dane R. ;
Biegert, Jens .
NEW JOURNAL OF PHYSICS, 2014, 16
[3]   High-order harmonic generation by molecules of discrete rotational symmetry interacting with circularly polarized laser field [J].
Averbukh, V ;
Alon, OE ;
Moiseyev, N .
PHYSICAL REVIEW A, 2001, 64 (03) :13
[4]   Generation of harmonics via multiphoton resonant excitation of hydrogenlike ions in an x-ray free-electron-laser field [J].
Avetissian, H. K. ;
Avchyan, B. R. ;
Mkrtchian, G. F. .
PHYSICAL REVIEW A, 2014, 90 (05)
[5]   Bicircular High-Harmonic Spectroscopy Reveals Dynamical Symmetries of Atoms and Molecules [J].
Baykusheva, Denitsa ;
Ahsan, Md Sabbir ;
Lin, Nan ;
Woerner, Hans Jakob .
PHYSICAL REVIEW LETTERS, 2016, 116 (12)
[6]  
Berry MV., 1980, PROGR OPTICS, V18, P257, DOI [DOI 10.1016/S0079-6638(08)70215-4, 10.1016/S0079-6638(08)70215-4]
[7]   Spectral caustic in two-color high-order harmonic generation: Role of Coulomb effects [J].
Birulia, V. A. ;
Strelkov, V. V. .
PHYSICAL REVIEW A, 2019, 99 (04)
[8]  
Bleistein N., 1986, Asymptotic Expansions of Integrals
[9]   Ideal Waveform to Generate the Maximum Possible Electron Recollision Energy for Any Given Oscillation Period [J].
Chipperfield, L. E. ;
Robinson, J. S. ;
Tisch, J. W. G. ;
Marangos, J. P. .
PHYSICAL REVIEW LETTERS, 2009, 102 (06)
[10]  
Chipperfield L E, 2007, THESIS