SERIES WITH HARMONIC-LIKE NUMBERS AND SQUARED BINOMIAL COEFFICIENTS

被引:8
作者
Wang, Xiaoyuan [1 ]
Chu, Wenchang [2 ]
机构
[1] Dalian Jiaotong Univ, Sch Sci, Dalian, Peoples R China
[2] Univ Salento, Dept Math & Phys, Lecce, Italy
关键词
harmonic numbers; central binomial coefficient; hypergeometric series; Gauss summation theorem; the Gamma-function; Ramanujan-like series; HYPERGEOMETRIC APPROACH; FORMULAS;
D O I
10.1216/rmj.2022.52.1849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By reformulating the Gauss summation theorem with a free variable x so that both sides of the equality can be expanded into Maclaurin series, we evaluate, in closed form, many different infinite series containing harmonic-like numbers and squared central binomial coefficients.
引用
收藏
页码:1849 / 1866
页数:18
相关论文
共 25 条
[1]   Discovering and Proving Infinite Binomial Sums Identities [J].
Ablinger, Jakob .
EXPERIMENTAL MATHEMATICS, 2017, 26 (01) :62-71
[2]  
Bailey WN., 1935, Generalized Hypergeometric Series
[3]  
Boyadzhiev KN, 2012, J INTEGER SEQ, V15
[4]   On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions [J].
Campbell, John M. ;
D'Aurizio, Jacopo ;
Sondow, Jonathan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) :90-121
[5]   Series Containing Squared Central Binomial Coefficients and Alternating Harmonic Numbers [J].
Campbell, John M. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)
[6]  
Campbell JM, 2018, RAMANUJAN J, V46, P373, DOI 10.1007/s11139-018-9995-9
[7]   An integral transform related to series involving alternating harmonic numbers [J].
Campbell, John M. ;
Sofo, Anthony .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (07) :547-559
[8]   NEW SERIES INVOLVING HARMONIC NUMBERS AND SQUARED CENTRAL BINOMIAL COEFFICIENTS [J].
Campbell, John Maxwell .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (08) :2513-2544
[9]  
Chen HW, 2016, J INTEGER SEQ, V19
[10]   Dixon's 3F2(1)-series and identities involving harmonic numbers and the Riemann zeta function [J].
Chen, Xiaojing ;
Chu, Wenchang .
DISCRETE MATHEMATICS, 2010, 310 (01) :83-91