Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors

被引:314
作者
Wu, Zixuan [1 ,2 ]
Yang, Xing [1 ,2 ]
Wu, Jin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangdong Prov Key Lab Display Mat & Technol, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
organohydrogels; conductive hydrogels; stretchable electronics; gas sensor; humidity sensor; strain sensor; temperature sensor; STRAIN SENSORS; GAS SENSORS; TEMPERATURE SENSOR; TRANSPARENT; SENSITIVITY; ARRAYS; ELECTRONICS; FABRICATION; NETWORK; TOUGH;
D O I
10.1021/acsami.0c21841
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conductive hydrogels have drawn significant attention in the field of stretchable/wearable sensors due to their intrinsic stretchability, tunable conductivity, biocompatibility, multistimuli sensitivity, and self-healing ability. Recent advancements in hydrogeland organohydrogel-based sensors, including a novel sensing mechanism, outstanding performance, and broad application scenarios, suggest the great potential of hydrogels for stretchable electronics. However, a systematic summary of hydrogel- and organohydrogel-based sensors in terms of their working principles, unique properties, and promising applications is still lacking. In this spotlight, we present recent advances in hydrogel- and organohydrogel-based stretchable sensors with four main sections: improved stability of hydrogels, fabrication and characterization of organohydrogel, working principles, and performance of different types of sensors. We particularly highlight our recent work on ultrastretchable and high-performance strain, temperature, humidity, and gas sensors based on polyacrylamide/carrageenan double network hydrogel and ethylene glycol/ glycerol modified organohydrogels obtained via a facile solvent displacement strategy. The organohydrogels display higher stability (drying and freezing tolerances) and sensing performances than corresponding hydrogels. The sensing mechanisms, key factors influencing the performance, and application prospects of these sensors are revealed. Especially, we find that the hindering effect of polymer net-works on the ionic transport is one of the key mechanisms applicable for all four of these kinds of sensors.
引用
收藏
页码:2128 / 2144
页数:17
相关论文
共 70 条
[1]   Deicing properties of sodium, potassium, magnesium, and calcium chlorides, sodium formate and salt compositions on their basis [J].
Achkeeva, M. V. ;
Romanyuk, N. V. ;
Frolova, E. A. ;
Kondakov, D. F. ;
Khomyakov, D. M. ;
Danilov, V. P. .
THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2015, 49 (04) :481-484
[2]   Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection [J].
Cai, Guofa ;
Wang, Jiangxin ;
Qian, Kai ;
Chen, Jingwei ;
Li, Shaohui ;
Lee, Pooi See .
ADVANCED SCIENCE, 2017, 4 (02)
[3]   Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range [J].
Cai, Yichen ;
Shen, Jie ;
Ge, Gang ;
Zhang, Yizhou ;
Jin, Wanqin ;
Huang, Wei ;
Shao, Jinjun ;
Yang, Jian ;
Dong, Xiaochen .
ACS NANO, 2018, 12 (01) :56-62
[4]   Rational Fabrication of Anti-Freezing, Non-Drying Tough Organohydrogels by One-Pot Solvent Displacement [J].
Chen, Fan ;
Zhou, Dan ;
Wang, Jiahui ;
Li, Tianzhen ;
Zhou, Xiaohu ;
Gan, Tiansheng ;
Handschuh-Wang, Stephan ;
Zhou, Xuechang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (22) :6568-6571
[5]   Humidity sensors: A review of materials and mechanisms [J].
Chen, Z ;
Lu, C .
SENSOR LETTERS, 2005, 3 (04) :274-295
[6]  
Chortos A, 2016, NAT MATER, V15, P937, DOI [10.1038/nmat4671, 10.1038/NMAT4671]
[7]   Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range [J].
Gao, Hainan ;
Zhao, Ziguang ;
Cai, Yudong ;
Zhou, Jiajia ;
Hua, Wenda ;
Chen, Lie ;
Wang, Li ;
Zhang, Jianqi ;
Han, Dong ;
Liu, Mingjie ;
Jiang, Lei .
NATURE COMMUNICATIONS, 2017, 8
[8]   Crystal-confined freestanding ionic liquids for reconfigurable and repairable electronics [J].
Gao, Naiwei ;
He, Yonglin ;
Tao, Xinglei ;
Xu, Xiao-Qi ;
Wu, Xun ;
Wang, Yapei .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J].
Gao, Wei ;
Emaminejad, Sam ;
Nyein, Hnin Yin Yin ;
Challa, Samyuktha ;
Chen, Kevin ;
Peck, Austin ;
Fahad, Hossain M. ;
Ota, Hiroki ;
Shiraki, Hiroshi ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Brooks, George A. ;
Davis, Ronald W. ;
Javey, Ali .
NATURE, 2016, 529 (7587) :509-+
[10]   Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor [J].
Ge, Gang ;
Lu, Yao ;
Qu, Xinyu ;
Zhao, Wen ;
Ren, Yanfang ;
Wang, Wenjun ;
Wang, Qian ;
Huang, Wei ;
Dong, Xiaochen .
ACS NANO, 2020, 14 (01) :218-228