The fluorescence quenching of rhodamine 6G as an alternative sensing strategy for the quantification of silver and gold nanoparticles

被引:4
作者
Molina Torres, Maria Andrea [1 ,2 ]
Viviana Veglia, Alicia [1 ,2 ]
Lorena Pacioni, Natalia [1 ,2 ]
机构
[1] Univ Nacl Cordoba, Fac Ciencias Quim, Dept Quim Organ, Haya de la Torre & Medina Allende S-N,X5000HUA, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, INFIQC, Cordoba, Argentina
关键词
Gold nanoparticles; Silver nanoparticles; Rhodamine; 6G; Fluorescence quenching; Surface river water; Tap water; FUNCTIONALIZED CARBON DOTS; WATER SAMPLES; EXTRACTION; GUIDELINES; SENSORS; DESIGN;
D O I
10.1016/j.microc.2020.105645
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A method for the quantification of 22-26 nm gold (AuNP) and 10-20 nm silver nanoparticles (AgNP) was developed using the fluorescence quenching of rhodamine-6G. This fluorescent probe detected the different metal nanoparticles (MNP) at the pmol L-1 level (3.6 to 15.6 pmol L-1) depending on the type of nanoparticle) in phosphate buffer solutions at pH 6.94. The method was validated at the 95% confidence level using recovery tests to spiked drinking and surface river water (before and after industries). For AuNP@citrate26 and AgNP@SDDC12, the overall average recoveries ((R) over bar) were 90% (RSD: 11%) and 82% (RSD: 10%) in drinking water, respectively. Whereas, in surface river water before and after industries, (R) over bar were 88% (RSD: 17%) and 93% (RSD: 11%) for AuNP@citrate26, correspondingly; and 94% (RSD: 6%) and 83% (12%) for AgNP@SDDC12, respectively. The proposed strategy represents an accurate, rapid, simple, and cost-effective methodology to analyze MNP in aqueous systems.
引用
收藏
页数:8
相关论文
共 54 条
[1]   Association models for binding of molecules to nanostructures [J].
Ahumada, Manuel ;
Lissi, Eduardo ;
Montagut, Ana Maria ;
Valenzuela-Henriquez, Francisco ;
L. Pacioni, Natalia ;
Alarcon, Emilio I. .
ANALYST, 2017, 142 (12) :2067-2089
[2]   ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving [J].
Allabashi, R. ;
Stach, W. ;
de la Escosura-Muniz, A. ;
Liste-Calleja, L. ;
Merkoci, A. .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (08) :2003-2011
[3]   Quantification of Resonance Raman Enhancement Factors for Rhodamine 6G (R6G) in Water and on Gold and Silver Nanoparticles: Implications for Single-Molecule R6G SERS [J].
Ameer, Fathima S. ;
Pittman, Charles U., Jr. ;
Zhang, Dongmao .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (51) :27096-27104
[4]  
Anger Pascal, 2006, Phys Rev Lett, V96, P113002
[5]   Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments [J].
Batley, Graeme E. ;
Kirby, Jason K. ;
McLaughlin, Michael J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (03) :854-862
[6]   Nanoparticles in the environment: where do we come from, where do we go to? [J].
Bundschuh, Mirco ;
Filser, Juliane ;
Luderwald, Simon ;
Mckee, Moira S. ;
Metreveli, George ;
Schaumann, Gabriele E. ;
Schulz, Ralf ;
Wagner, Stephan .
ENVIRONMENTAL SCIENCES EUROPE, 2018, 30
[7]  
Cases M. Valcarcel, 2018, FDN ANAL CHEM SPRING, DOI [10.1007/978-3-319- 62872-1, DOI 10.1007/978-3-319-62872-1, 10.1007/978-3-319-62872-1.]
[8]   Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect [J].
Cayuela, Angelina ;
Soriano, M. Laura ;
Valcarcel, Miguel .
ANALYTICA CHIMICA ACTA, 2015, 872 :70-76
[9]   Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: Formation of nanohybrids [J].
Cayuela, Angelina ;
Laura Soriano, M. ;
Carmen Carrion, M. ;
Valcarcel, Miguel .
ANALYTICA CHIMICA ACTA, 2014, 820 :133-138
[10]   The Preparation of Palladium Nanoparticles [J].
Cookson, James .
PLATINUM METALS REVIEW, 2012, 56 (02) :83-98