Enhanced Electrical Conductivity in Extruded Single-Wall Carbon Nanotube Wires from Modified Coagulation Parameters and Mechanical Processing

被引:65
作者
Bucossi, Andrew R. [1 ,2 ]
Cress, Cory D. [4 ]
Schauerman, Christopher M. [2 ]
Rossi, Jamie E. [2 ,3 ]
Puchades, Ivan [2 ,3 ]
Landi, Brian J. [2 ,3 ]
机构
[1] Rochester Inst Technol, Dept Microsyst Engn, Rochester, NY 14623 USA
[2] Rochester Inst Technol, NanoPower Res Lab, Rochester, NY 14623 USA
[3] Rochester Inst Technol, Dept Chem Engn, Rochester, NY 14623 USA
[4] US Naval Res Lab, Elect Sci & Technol Div, Washington, DC 20375 USA
关键词
single-wall carbon nanotubes; chlorosulfonic acid; dispersion; extrusion; coagulation; electrical conductivity; FIBERS; CABLES;
D O I
10.1021/acsami.5b08668
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Single-wall carbon nanotubes (SWCNTs) synthesized via laser vaporization have been dispersed using chlorosulfonic acid (CSA) and extruded under varying coagulation conditions to fabricate multifunctional wires. The use of high purity SWCNT material based upon established purification methods yields wires with highly aligned nanoscale morphology and an over 4X improvement in electrical conductivity over as-produced SWCNT material. A series of eight liquids have been evaluated for use as a coagulant bath, and each coagulant yielded unique wire morphology based on its interaction with the SWCNT-CSA dispersion. In particular, dimethylacetamide as a coagulant bath is shown to fabricate highly uniform SWCNT wires, and acetone coagulant baths result in the highest specific conductivity and tensile strength. A 2X improvement in specific conductivity has been measured for SWCNT wires following tensioning induced both during extrusion via increased coagulant bath depth and during solvent evaporation via mechanical strain, over that of as-extruded wires from shallower coagulant baths. Overall, combination of the optimized coagulation parameters has yielded acid-doped wires with the highest reported room temperature electrical conductivities to date of 4.1-5.0 MS/m and tensile strengths of 210-250 MPa. Such improvements in bulk electrical conductivity can impact the adoption of metal-free, multifunctional SWCNT materials for advanced cabling architectures.
引用
收藏
页码:27299 / 27305
页数:7
相关论文
共 21 条
[1]   High conductivity carbon nanotube wires from radial densification and ionic doping [J].
Alvarenga, Jack ;
Jarosz, Paul R. ;
Schauerman, Chris M. ;
Moses, Brian T. ;
Landi, Brian J. ;
Cress, Cory D. ;
Raffaelle, Ryne P. .
APPLIED PHYSICS LETTERS, 2010, 97 (18)
[2]   Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks [J].
Barnes, Teresa M. ;
Blackburn, Jeffrey L. ;
van de Lagemaat, Jao ;
Coutts, Timothy J. ;
Heben, Michael J. .
ACS NANO, 2008, 2 (09) :1968-1976
[3]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[4]   Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes [J].
Blackburn, Jeffrey L. ;
Barnes, Teresa M. ;
Beard, Matthew C. ;
Kim, Yong-Hyun ;
Tenent, Robert C. ;
McDonald, Timothy J. ;
To, Bobby ;
Coutts, Timothy J. ;
Heben, Michael J. .
ACS NANO, 2008, 2 (06) :1266-1274
[5]  
Davis VA, 2009, NAT NANOTECHNOL, V4, P830, DOI [10.1038/nnano.2009.302, 10.1038/NNANO.2009.302]
[6]   Macroscopic, neat, single-walled carbon nanotube fibers [J].
Ericson, LM ;
Fan, H ;
Peng, HQ ;
Davis, VA ;
Zhou, W ;
Sulpizio, J ;
Wang, YH ;
Booker, R ;
Vavro, J ;
Guthy, C ;
Parra-Vasquez, ANG ;
Kim, MJ ;
Ramesh, S ;
Saini, RK ;
Kittrell, C ;
Lavin, G ;
Schmidt, H ;
Adams, WW ;
Billups, WE ;
Pasquali, M ;
Hwang, WF ;
Hauge, RH ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 2004, 305 (5689) :1447-1450
[7]  
Hemond J, 2012, ELECTR CONTACT, P56
[8]   Coaxial cables with single-wall carbon nanotube outer conductors exhibiting attenuation/length within specification [J].
Jarosz, P. R. ;
Shaukat, A. ;
Mastrangelo, T. ;
Schauerman, C. M. ;
Cress, C. D. ;
Ridgley, R. D. ;
Landi, B. J. .
MICRO & NANO LETTERS, 2012, 7 (09) :959-961
[9]   Carbon nanotube wires and cables: Near-term applications and future perspectives [J].
Jarosz, Paul ;
Schauerman, Christopher ;
Alvarenga, Jack ;
Moses, Brian ;
Mastrangelo, Thomas ;
Raffaelle, Ryne ;
Ridgley, Richard ;
Landi, Brian .
NANOSCALE, 2011, 3 (11) :4542-4553
[10]   High-Performance, Lightweight Coaxial Cable from Carbon Nanotube Conductors [J].
Jarosz, Paul R. ;
Shaukat, Aalyia ;
Schauerman, Christopher M. ;
Cress, Cory D. ;
Kladitis, Paul E. ;
Ridgley, Richard D. ;
Landi, Brian J. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (02) :1103-1109