Music Signal Separation Based on Supervised Nonnegative Matrix Factorization with Orthogonality and Maximum-Divergence Penalties

被引:26
作者
Kitamura, Daichi [1 ]
Saruwatari, Hiroshi [1 ]
Yagi, Kosuke [1 ]
Shikano, Kiyohiro [1 ]
Takahashi, Yu [2 ]
Kondo, Kazunobu [2 ]
机构
[1] Nara Inst Sci & Technol, Ikoma 6300192, Japan
[2] Yamaha Corp, Res & Dev, Iwata 4380192, Japan
关键词
music signal separation; nonnegative matrix factorization; supervised method;
D O I
10.1587/transfun.E97.A.1113
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we address monaural source separation based on supervised nonnegative matrix factorization (SNMF) and propose a new penalized SNMF. Conventional SNMF often degrades the separation performance owing to the basis-sharing problem. Our penalized SNMF forces nontarget bases to become different from the target bases, which increases the separated sound quality.
引用
收藏
页码:1113 / 1118
页数:6
相关论文
共 7 条
[1]  
[Anonymous], 2001, TECHNICAL REPORT
[2]  
Kameoka H, 2012, INT CONF ACOUST SPEE, P5365, DOI 10.1109/ICASSP.2012.6289133
[3]  
Lee DD, 2001, ADV NEUR IN, V13, P556
[4]  
Nakano Masahiro, 2010, Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), P283, DOI 10.1109/MLSP.2010.5589233
[5]  
Smaragdis P., 2010, LNCS, V6365, P140
[6]   Performance measurement in blind audio source separation [J].
Vincent, Emmanuel ;
Gribonval, Remi ;
Févotte, Cedric .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2006, 14 (04) :1462-1469
[7]   Monaural sound source separation by nonnegative matrix factorization with tempora continuity and sparseness criteria [J].
Virtanen, Tuomas .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (03) :1066-1074