Computationally advantageous expressions for 3-D MHD stability

被引:1
作者
Weyens, T. [1 ,2 ]
Reynolds-Barredo, J. M. [3 ]
Loarte, A. [1 ]
机构
[1] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[2] MathWorks, Dr Holtroplaan 5b, NL-5652 XB Eindhoven, Netherlands
[3] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
关键词
Ideal linear MHD stability; Peeling-ballooning; High-n; Numerical analysis; INSTABILITIES;
D O I
10.1016/j.cpc.2019.04.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerically accurate expressions are critical for the evaluation of 3-D MHD plasma stability, as the conventional formulas generally suffer from large numerical problems. In this work, we present new expressions for the quantities of interest, namely the parallel current density sigma, the local shear S and the normal and geodesic components of the curvature kappa. High accuracy is achieved in these expressions by employing strategies such as avoiding as much as possible the computation of derivatives in the direction normal to the flux surfaces, and avoiding cancellation errors by subtracting large numbers. The result is a set of equations that have been found to be important for the calculation of MHD stability of axisymmetric equilibria, and essential for the assessment of 3-D ones. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:60 / 71
页数:12
相关论文
共 20 条
[1]  
Arfken, 2013, MATH METHODS PHYS, DOI DOI 10.1016/C2009-0-30629-7
[2]   HIGH MODE NUMBER STABILITY OF AN AXISYMMETRIC TOROIDAL PLASMA [J].
CONNOR, JW ;
HASTIE, RJ ;
TAYLOR, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 365 (1720) :1-17
[3]   BALLOONING MODE SPECTRUM IN GENERAL TOROIDAL SYSTEMS [J].
DEWAR, RL ;
GLASSER, AH .
PHYSICS OF FLUIDS, 1983, 26 (10) :3038-3052
[4]   3D vacuum magnetic field modelling of the ITER ELM control coil during standard operating scenarios [J].
Evans, T. E. ;
Orlov, D. M. ;
Wingen, A. ;
Wu, W. ;
Loarte, A. ;
Casper, T. A. ;
Schmitz, O. ;
Saibene, G. ;
Schaffer, M. J. ;
Daly, E. .
NUCLEAR FUSION, 2013, 53 (09)
[5]   IDEAL MAGNETO-HYDRODYNAMIC THEORY OF MAGNETIC FUSION SYSTEMS [J].
FREIDBERG, JP .
REVIEWS OF MODERN PHYSICS, 1982, 54 (03) :801-902
[6]   CALCULATION OF MERCIER STABILITY LIMITS OF TOROIDAL HELIACS [J].
GARDNER, HJ ;
BLACKWELL, DB .
NUCLEAR FUSION, 1992, 32 (11) :2009-2019
[7]   INTERCHANGE INSTABILITIES IN IDEAL HYDROMAGNETIC THEORY [J].
GREENE, JM ;
JOHNSON, JL .
PLASMA PHYSICS, 1968, 10 (08) :729-&
[8]   SIESTA: A scalable iterative equilibrium solver for toroidal applications [J].
Hirshman, S. P. ;
Sanchez, R. ;
Cook, C. R. .
PHYSICS OF PLASMAS, 2011, 18 (06)
[9]   STEEPEST-DESCENT MOMENT METHOD FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
WHITSON, JC .
PHYSICS OF FLUIDS, 1983, 26 (12) :3553-3568
[10]   Computation of multi-region relaxed magnetohydrodynamic equilibria [J].
Hudson, S. R. ;
Dewar, R. L. ;
Dennis, G. ;
Hole, M. J. ;
McGann, M. ;
von Nessi, G. ;
Lazerson, S. .
PHYSICS OF PLASMAS, 2012, 19 (11)