Aptamer based surface enhanced Raman scattering detection of adenosine using various core sizes of Au-Ag core-shell nanoparticles

被引:14
作者
Ko, Fu-Hsiang [1 ]
Chang, Yu-Cheng [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Feng Chia Univ, Dept Mat Sci & Engn, Taichung 40724, Taiwan
关键词
SPECTROSCOPY; GROWTH; GOLD; DNA; NANOSTRUCTURES;
D O I
10.1039/c4ra02762k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present study synthesizes different sizes of Au nanoparticles (NPs) by adjusting the concentration of citrate. This method produces Au NPs with uniform sizes that can be used to grow Au-Ag core-shell NPs by the seeding growth method. We report the fabrication of monolayer Au NPs or Au-Ag core-shell NPs through the self-assembly of NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. The results indicate that the self-assembly time of Au NPs or Au-Ag core-shell NPs plays a crucial role in determining the surface coverage of NPs on the silicon substrate. The appropriate sizes of Au NPs or Au-Ag core-shell NPs were optimized to yield the greatest SERS effect in the rhodamine B molecule. The substrates with self-assembled Au-Ag core-shell NPs can also be used to detect adenosine by a structure-switch aptamer. The combination of Au-Ag core-shell NPs and DNA-based adenosine sensors provides a facile, high enhancement, low detection limit (0.1 nM) and low cost fabrication, which shall be of significant value for practical applications of other aptamer sensing systems.
引用
收藏
页码:26251 / 26257
页数:7
相关论文
共 36 条
[1]   Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Zhao, Jing ;
Van Duyne, Richard P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1653-1661
[2]   Controlling growth density and patterning of single crystalline silicon nanowires [J].
Chang, Tung-Hao ;
Chang, Yu-Cheng ;
Liu, Fu-Ken ;
Chu, Tieh-Chi .
APPLIED SURFACE SCIENCE, 2010, 256 (23) :7339-7343
[3]  
Chechik V, 2000, ADV MATER, V12, P1161, DOI 10.1002/1521-4095(200008)12:16<1161::AID-ADMA1161>3.0.CO
[4]  
2-C
[5]   Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer [J].
Chen, Ji-Wei ;
Liu, Xue-Ping ;
Feng, Ke-Jun ;
Liang, Yi ;
Jiang, Jian-Hui ;
Shen, Guo-Li ;
Yu, Ru-Qin .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (01) :66-71
[6]   A New Aptameric Biosensor for Cocaine Based on Surface-Enhanced Raman Scattering Spectroscopy [J].
Chen, Jiwei ;
Jiang, Jianhui ;
Gao, Xing ;
Liu, Guokun ;
Shen, Guoli ;
Yu, Ruqin .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8374-8382
[7]   Electromagnetic contribution to surface enhanced Raman scattering revisited [J].
Etchegoin, P ;
Cohen, LF ;
Hartigan, H ;
Brown, RJC ;
Milton, MJT ;
Gallop, JC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (10) :5281-5289
[8]   A heterogeneous PNA-based SERS method for DNA detection [J].
Fabris, Laura ;
Dante, Mark ;
Braun, Gary ;
Lee, Seung Joon ;
Reich, Norbert O. ;
Moskovits, Martin ;
Nguyen, Thuc-Quyen ;
Bazan, Guillermo C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (19) :6086-+
[9]   A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [J].
Fan, Meikun ;
Andrade, Gustavo F. S. ;
Brolo, Alexandre G. .
ANALYTICA CHIMICA ACTA, 2011, 693 (1-2) :7-25
[10]   Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties [J].
Freeman, RG ;
Hommer, MB ;
Grabar, KC ;
Jackson, MA ;
Natan, MJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (02) :718-724