Aptamer based surface enhanced Raman scattering detection of adenosine using various core sizes of Au-Ag core-shell nanoparticles

被引:14
作者
Ko, Fu-Hsiang [1 ]
Chang, Yu-Cheng [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Feng Chia Univ, Dept Mat Sci & Engn, Taichung 40724, Taiwan
关键词
SPECTROSCOPY; GROWTH; GOLD; DNA; NANOSTRUCTURES;
D O I
10.1039/c4ra02762k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present study synthesizes different sizes of Au nanoparticles (NPs) by adjusting the concentration of citrate. This method produces Au NPs with uniform sizes that can be used to grow Au-Ag core-shell NPs by the seeding growth method. We report the fabrication of monolayer Au NPs or Au-Ag core-shell NPs through the self-assembly of NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. The results indicate that the self-assembly time of Au NPs or Au-Ag core-shell NPs plays a crucial role in determining the surface coverage of NPs on the silicon substrate. The appropriate sizes of Au NPs or Au-Ag core-shell NPs were optimized to yield the greatest SERS effect in the rhodamine B molecule. The substrates with self-assembled Au-Ag core-shell NPs can also be used to detect adenosine by a structure-switch aptamer. The combination of Au-Ag core-shell NPs and DNA-based adenosine sensors provides a facile, high enhancement, low detection limit (0.1 nM) and low cost fabrication, which shall be of significant value for practical applications of other aptamer sensing systems.
引用
收藏
页码:26251 / 26257
页数:7
相关论文
共 36 条
  • [1] Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing
    Camden, Jon P.
    Dieringer, Jon A.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) : 1653 - 1661
  • [2] Controlling growth density and patterning of single crystalline silicon nanowires
    Chang, Tung-Hao
    Chang, Yu-Cheng
    Liu, Fu-Ken
    Chu, Tieh-Chi
    [J]. APPLIED SURFACE SCIENCE, 2010, 256 (23) : 7339 - 7343
  • [3] Chechik V, 2000, ADV MATER, V12, P1161, DOI 10.1002/1521-4095(200008)12:16<1161::AID-ADMA1161>3.0.CO
  • [4] 2-C
  • [5] Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer
    Chen, Ji-Wei
    Liu, Xue-Ping
    Feng, Ke-Jun
    Liang, Yi
    Jiang, Jian-Hui
    Shen, Guo-Li
    Yu, Ru-Qin
    [J]. BIOSENSORS & BIOELECTRONICS, 2008, 24 (01) : 66 - 71
  • [6] A New Aptameric Biosensor for Cocaine Based on Surface-Enhanced Raman Scattering Spectroscopy
    Chen, Jiwei
    Jiang, Jianhui
    Gao, Xing
    Liu, Guokun
    Shen, Guoli
    Yu, Ruqin
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) : 8374 - 8382
  • [7] Electromagnetic contribution to surface enhanced Raman scattering revisited
    Etchegoin, P
    Cohen, LF
    Hartigan, H
    Brown, RJC
    Milton, MJT
    Gallop, JC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (10) : 5281 - 5289
  • [8] A heterogeneous PNA-based SERS method for DNA detection
    Fabris, Laura
    Dante, Mark
    Braun, Gary
    Lee, Seung Joon
    Reich, Norbert O.
    Moskovits, Martin
    Nguyen, Thuc-Quyen
    Bazan, Guillermo C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (19) : 6086 - +
  • [9] A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry
    Fan, Meikun
    Andrade, Gustavo F. S.
    Brolo, Alexandre G.
    [J]. ANALYTICA CHIMICA ACTA, 2011, 693 (1-2) : 7 - 25
  • [10] Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties
    Freeman, RG
    Hommer, MB
    Grabar, KC
    Jackson, MA
    Natan, MJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (02) : 718 - 724