A polynomial bound in Freiman's theorem

被引:123
作者
Chang, MC [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
D O I
10.1215/S0012-7094-02-11331-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the following improvement on Freiman's theorem on set addition is obtained (see Theorems 1 and 2 in Section 1). Let A subset of Z be a finite set such that \A + A\ < alpha \A\. Then A is contained in a proper d-dimensional progression P, where d less than or equal to [alpha - 1] and log(\P\/\A\) < Calpha(2)(logalpha)(3). Earlier bounds involved exponential dependence in alpha in the second estimate. Our argument combines I. Ruzsa's method, which we improve in several places, as well as Y. Bilu's proof of Freiman's theorem.
引用
收藏
页码:399 / 419
页数:21
相关论文
共 32 条
[1]  
[Anonymous], 2001, NOTICES AM MATH SOC
[2]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[3]  
BILU Y, 1999, STRUCTURE THEORY SET, V258, P77
[4]  
Bogolio?boff N., 1939, ANN CHAIRE PHYS MATH, V4, P185
[5]  
CHAIMOVICH M, 1999, STRUCTURE THEORY SET, V258, P341
[6]   Inequidimensionality of Hilbert schemes [J].
Chang, MC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (09) :2521-2526
[7]  
COHEN G, 1999, STRUCTURE THEORY SET, V258, P327
[8]  
Elekes G, 1997, ACTA ARITH, V81, P365
[9]  
Erdos P., 1983, Studies in Pure Mathematics, P213, DOI DOI 10.1007/978-3-0348-5438-2_19
[10]  
Falconer K.J., 1986, CAMBRIDGE TRACTS MAT, V85