Topological time crystals

被引:43
|
作者
Giergiel, Krzysztof [1 ]
Dauphin, Alexandre [2 ]
Lewenstein, Maciej [2 ,3 ]
Zakrzewski, Jakub [1 ,4 ]
Sacha, Krzysztof [1 ,4 ]
机构
[1] Uniwersytet Jagiellonski, Inst Fizyki Imienia Mariana Smoluchowskiego, Ulica Profesora Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, E-08860 Castelldefels, Barcelona, Spain
[3] ICREA, Pg Lluis Co 23, E-08010 Barcelona, Spain
[4] Uniwersytet Jagiellonski, Mark Kac Complex Syst Res Ctr, Ulica Profesora Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
time crystals; topological phases; ultra-cold atoms; COLD ATOMS; MIRROR; PHASE; REFLECTION; SOLITONS; STATE;
D O I
10.1088/1367-2630/ab1e5f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By analogy with the formation of space crystals, crystalline structures can also appear in the time domain. While in the case of space crystals we often ask about periodic arrangements of atoms in space at a moment of a detection, in time crystals the role of space and time is exchanged. That is, we fix a space point and ask if the probability density for detection of a system at this point behaves periodically in time. Here, we show that in periodically driven systems it is possible to realize topological insulators, which can be observed in time. The bulk-edge correspondence is related to the edge in time, where edge states localize. We focus on two examples: Su-Schrieffer-Heeger model in time and Bose Haldane insulator which emerges in the dynamics of a periodically driven many-body system.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Discrete time quasicrystals
    Giergiel, Krzysztof
    Kuros, Arkadiusz
    Sacha, Krzysztof
    PHYSICAL REVIEW B, 2019, 99 (22)
  • [42] Piezoelectricity and topological quantum phase transitions in two-dimensional spin-orbit coupled crystals with time-reversal symmetry
    Yu, Jiabin
    Liu, Chao-Xing
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [43] Time Crystals in Ultracold Matter
    J. T. Mendonça
    V. V. Dodonov
    Journal of Russian Laser Research, 2014, 35 : 93 - 100
  • [44] Topological insulators and topological nonlinear σ models
    Yao, Hong
    Lee, Dung-Hai
    PHYSICAL REVIEW B, 2010, 82 (24):
  • [45] TIME CRYSTALS IN ULTRACOLD MATTER
    Mendonca, J. T.
    Dodonov, V. V.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2014, 35 (01) : 93 - 100
  • [46] Ambipolar transport in bulk crystals of a topological insulator by gating with ionic liquid
    Segawa, Kouji
    Ren, Zhi
    Sasaki, Satoshi
    Tsuda, Tetsuya
    Kuwabata, Susumu
    Ando, Yoichi
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [47] Tunable Topological Surface States of Three-Dimensional Acoustic Crystals
    Lai, Hua-Shan
    Xu, Yu-Li
    He, Bo
    Sun, Xiao-Chen
    He, Cheng
    Chen, Yan-Feng
    FRONTIERS IN PHYSICS, 2021, 9
  • [48] Tutorial: Computing Topological Invariants in 2D Photonic Crystals
    Blanco de Paz, Maria
    Devescovi, Chiara
    Giedke, Geza
    Jose Saenz, Juan
    Vergniory, Maia G.
    Bradlyn, Barry
    Bercioux, Dario
    Garcia-Etxarri, Aitzol
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (02)
  • [49] Crystallographic splitting theorem for band representations and fragile topological photonic crystals
    Alexandradinata, A.
    Holler, J.
    Wang, Chong
    Cheng, Hengbin
    Lu, Ling
    PHYSICAL REVIEW B, 2020, 102 (11)
  • [50] Self-induced topological transition in phononic crystals by nonlinearity management
    Chaunsali, Rajesh
    Theocharis, Georgios
    PHYSICAL REVIEW B, 2019, 100 (01)