Topological time crystals

被引:43
|
作者
Giergiel, Krzysztof [1 ]
Dauphin, Alexandre [2 ]
Lewenstein, Maciej [2 ,3 ]
Zakrzewski, Jakub [1 ,4 ]
Sacha, Krzysztof [1 ,4 ]
机构
[1] Uniwersytet Jagiellonski, Inst Fizyki Imienia Mariana Smoluchowskiego, Ulica Profesora Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, E-08860 Castelldefels, Barcelona, Spain
[3] ICREA, Pg Lluis Co 23, E-08010 Barcelona, Spain
[4] Uniwersytet Jagiellonski, Mark Kac Complex Syst Res Ctr, Ulica Profesora Stanislawa Lojasiewicza 11, PL-30348 Krakow, Poland
关键词
time crystals; topological phases; ultra-cold atoms; COLD ATOMS; MIRROR; PHASE; REFLECTION; SOLITONS; STATE;
D O I
10.1088/1367-2630/ab1e5f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By analogy with the formation of space crystals, crystalline structures can also appear in the time domain. While in the case of space crystals we often ask about periodic arrangements of atoms in space at a moment of a detection, in time crystals the role of space and time is exchanged. That is, we fix a space point and ask if the probability density for detection of a system at this point behaves periodically in time. Here, we show that in periodically driven systems it is possible to realize topological insulators, which can be observed in time. The bulk-edge correspondence is related to the edge in time, where edge states localize. We focus on two examples: Su-Schrieffer-Heeger model in time and Bose Haldane insulator which emerges in the dynamics of a periodically driven many-body system.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fractional time crystals
    Matus, Pawel
    Sacha, Krzysztof
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [2] Topological aspects of photonic time crystals
    Lustig, Eran
    Sharabi, Yonatan
    Segev, Mordechai
    OPTICA, 2018, 5 (11): : 1390 - 1395
  • [3] Time crystals: Analysis of experimental conditions
    Giergiel, Krzysztof
    Kosior, Arkadiusz
    Hannaford, Peter
    Sacha, Krzysztof
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [4] Observation of Photonic Topological Floquet Time Crystals
    Wang, Bing
    Quan, Jiaqi
    Han, Jianfei
    Shen, Xiaopeng
    Wu, Hongwei
    Pan, Yiming
    LASER & PHOTONICS REVIEWS, 2022, 16 (05)
  • [5] Autonomous topological time crystals and knotty molecular motors
    Dai, Jin
    Peng, Xubiao
    Niemi, Antti J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (01)
  • [6] Topological photonic crystals: a review
    Wang, Hongfei
    Gupta, Samit Kumar
    Xie, Biye
    Lu, Minghui
    FRONTIERS OF OPTOELECTRONICS, 2020, 13 (01) : 50 - 72
  • [7] Topological crystals
    Tanda, S
    Tsuneta, T
    Toshima, T
    Matsuura, T
    Tsubota, M
    JOURNAL DE PHYSIQUE IV, 2005, 131 : 289 - 294
  • [8] Space-time phononic crystals with anomalous topological edge states
    Oudich, Mourad
    Deng, Yuanchen
    Tao, Molei
    Jing, Yun
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [9] Adiabatic and irreversible classical discrete time crystals
    Ernst, Adrian
    Rossi, Anna M. E. B.
    Fischer, Thomas M.
    SCIPOST PHYSICS, 2022, 13 (04):
  • [10] Band Structure and Temporal Topological Edge State of Continuous Photonic Time Crystals
    Dong, Rui-Yang
    Liu, You-Ming
    Sui, Jun-Yang
    Zhang, Hai-Feng
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (01) : 674 - 682