On p-adic q-L-functions and sums of powers

被引:44
作者
Kim, T [1 ]
机构
[1] Jangjeon Res Inst Math Sci, Kyungshang 678800, Nam Do, South Korea
关键词
q-series; p-adic q-L-function; p-adic q-integrals;
D O I
10.1016/S0012-365X(01)00293-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit p-adic expansion of Sigma(j=1)(*np)q(j)/[j](r) as a power series in n which generalizes the formula of Andrews (Discrete Math. 204 (1999) 15). Indeed, this is a q-analogue result due to Washington (J. Number Theory 69 (1998) 50), corresponding to the case q = 1. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 8 条
[1]   q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher [J].
Andrews, GE .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :15-25
[2]   STIRLINGS SERIES AND BERNOULLI NUMBERS [J].
DEEBA, EY ;
RODRIGUEZ, DM .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (05) :423-426
[3]   A note on p-adic Carlitz's q-Bernoulli numbers [J].
Kim, T ;
Rim, SH .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (02) :227-234
[4]   Sums of products of q-Bernoulli numbers [J].
Kim, T .
ARCHIV DER MATHEMATIK, 2001, 76 (03) :190-195
[5]  
KIM T, 2000, ADV STUD CONT MATH, V2, P9
[6]  
Kim T., 1994, Kyushu J. Math., V48, P73
[7]   ON CARLITZ Q-BERNOULLI NUMBERS [J].
KOBLITZ, N .
JOURNAL OF NUMBER THEORY, 1982, 14 (03) :332-339
[8]   p-adic L-functions and sums of powers [J].
Washington, LC .
JOURNAL OF NUMBER THEORY, 1998, 69 (01) :50-61