Aβ(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils

被引:245
作者
Meinhardt, Jessica [1 ,2 ]
Sachse, Carsten [1 ,2 ]
Hortschansky, Peter [3 ]
Grigorieff, Nikolaus [1 ]
Faendrich, Marcus [2 ,4 ,5 ]
机构
[1] Brandeis Univ, Howard Hughes Med Inst, Waltham, MA 02454 USA
[2] Fritz Lipmann Inst, Leibniz Inst Altersforsch, D-07745 Jena, Germany
[3] Hans Knoell Inst, Leibniz Inst Nat Stoff Forsch & Infekt Biol, D-07745 Jena, Germany
[4] Max Planck Res Unit Enzymol Prot Folding, D-06120 Halle, Saale, Germany
[5] Univ Halle Wittenberg, D-06120 Halle, Saale, Germany
基金
美国国家卫生研究院;
关键词
amyloid; neurodegeneration; prion; protein folding; structure; SOLID-STATE NMR; ATOMIC-FORCE MICROSCOPY; ELECTRON-MICROSCOPY; EXPERIMENTAL CONSTRAINTS; CRYOELECTRON MICROSCOPY; QUATERNARY STRUCTURE; ALZHEIMERS-DISEASE; PROTEIN; PEPTIDE; AGGREGATION;
D O I
10.1016/j.jmb.2008.11.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyloid fibrils characterize a diverse group of human diseases that includes Alzheimer's disease, Creutzfeldt-Jakob and type II diabetes. Alzheimer's amyloid fibrils consist of amyloid-beta (A beta) peptide and occur in a range of structurally different fibril morphologies. The structural characteristics of 12 single A beta(1-40) amyloid fibrils, all formed under the same solution conditions, were determined by electron cryo-microscopy and three-dimensional reconstruction. The majority of analyzed fibrils form a range of morphologies that show almost continuously altering structural properties. The observed fibril polymorphism implies that amyloid formation can lead, for the same polypeptide sequence, to many different patterns of inter- or intra-residue interactions. This property differs significantly from native, monomeric protein folding reactions that produce, for one protein sequence, only one ordered conformation an Only one set of inter-residue interactions. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:869 / 877
页数:9
相关论文
共 55 条
[1]   Effect of pH on the aggregate formation of a non-amyloid component (1-13) [J].
Abe, H ;
Nakanishi, H .
JOURNAL OF PEPTIDE SCIENCE, 2003, 9 (03) :177-186
[2]   Games played by rogue proteins in prion disorders and Alzheimer's disease [J].
Aguzzi, A ;
Haass, C .
SCIENCE, 2003, 302 (5646) :814-818
[3]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[4]   ARCHITECTURE AND POLYMORPHISM OF FIBRILLAR SUPRAMOLECULAR ASSEMBLIES PRODUCED BY IN-VITRO AGGREGATION OF HUMAN CALCITONIN [J].
BAUER, HH ;
AEBI, U ;
HANER, M ;
HERMANN, R ;
MULLER, M ;
ARVINTE, T ;
MERKLE, HP .
JOURNAL OF STRUCTURAL BIOLOGY, 1995, 115 (01) :1-15
[5]   Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy [J].
Bouchard, M ;
Zurdo, J ;
Nettleton, EJ ;
Dobson, CM ;
Robinson, CV .
PROTEIN SCIENCE, 2000, 9 (10) :1960-1967
[6]   THE CRYSTAL STRUCTURES OF 2 POLYAMIDES (NYLONS) [J].
BUNN, CW ;
GARNER, EV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1947, 189 (1016) :39-&
[7]   Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders [J].
Caughey, B ;
Lansbury, PT .
ANNUAL REVIEW OF NEUROSCIENCE, 2003, 26 :267-298
[8]   Ultrastructural organization of amyloid fibrils by atomic force microscopy [J].
Chamberlain, AK ;
MacPhee, CE ;
Zurdo, J ;
Morozova-Roche, LA ;
Hill, HAO ;
Dobson, CM ;
Davis, JJ .
BIOPHYSICAL JOURNAL, 2000, 79 (06) :3282-3293
[9]   Designing conditions for in vitro formation of amyloid protofilaments and fibrils [J].
Chiti, F ;
Webster, P ;
Taddei, N ;
Clark, A ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3590-3594
[10]   Protein misfolding, functional amyloid, and human disease [J].
Chiti, Fabrizio ;
Dobson, Christopher M. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :333-366