Enhancing nanocrystalline diamond surface conductivity by deposition temperature and chemical post-processing

被引:16
作者
Kozak, H. [1 ]
Kromka, A. [1 ]
Ledinsky, M. [1 ]
Rezek, B. [1 ]
机构
[1] Acad Sci Czech Republ, Inst Phys, Prague 16253 6, Czech Republic
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2009年 / 206卷 / 02期
关键词
SILICON; GROWTH; GLASS;
D O I
10.1002/pssa.200824355
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The surface conductivity of nanocrystalline diamond (NCD) films as a function of deposition temperature and chemical post-processing was characterized by current-voltage measurements using co-planar Au electrodes. Raman spectroscopy was applied to investigate the bulk quality of NCD films and characterize the relative amounts of sp diamond phase in the volume. The surface material properties and morphology were studied using atomic force microscopy (AFM) in tapping and phase detection regimes. The results indicate that the chemical post-processing of as grown NCD films by boiling in acid and re-hydrogenation leads to a significant increase in order of 10(-7) (Omega/square)(-1). As a function of the deposition temperature (with re-hydrogenation temperature kept constant) the surface conductivity of nanocrystalline diamond films shows optimum around 60 degrees C. This enhancement is attributed to the lowest amount of sp(2) phase on the surface. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:276 / 280
页数:5
相关论文
共 20 条
[1]   Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles [J].
Bacakova, L. ;
Grausova, L. ;
Vacik, J. ;
Fraczek, A. ;
Blazewicz, S. ;
Kromka, A. ;
Vanecek, M. ;
Svorcik, V. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (12) :2133-2140
[2]   Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface [J].
Cui, JB ;
Ristein, J ;
Ley, L .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :429-432
[3]   The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond [J].
Deferme, W. ;
Tanasa, G. ;
Amir, J. ;
Haenen, K. ;
Nesladek, M. ;
Flipse, C. F. J. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (4-8) :687-691
[4]   Identification of nanoscale dissipation processes by dynamic atomic force microscopy [J].
Garcia, R. ;
Gomez, C. J. ;
Martinez, N. F. ;
Patil, S. ;
Dietz, C. ;
Magerle, R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[5]   Field emission studies of CVD diamond thin films: effect of acid treatment [J].
Koinkar, PM ;
Patil, PP ;
More, MA ;
Tondare, VN ;
Joag, DS .
VACUUM, 2003, 72 (03) :321-326
[6]   Ultraviolet emission from a diamond pn junction [J].
Koizumi, S ;
Watanabe, K ;
Hasegawa, M ;
Kanda, H .
SCIENCE, 2001, 292 (5523) :1899-1901
[7]   Early stage of diamond growth at low temperature [J].
Kromka, A. ;
Potocky, S. ;
Cermak, J. ;
Rezek, B. ;
Potmesil, J. ;
Zemek, J. ;
Vanecek, M. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (7-10) :1252-1255
[8]   Formation of continuous nanocrystalline diamond layers on glass and silicon at low temperatures [J].
Kromka, Alexander ;
Rezek, Bohuslav ;
Remes, Zdenek ;
Michalka, Miroslav ;
Ledinsky, Martin ;
Zemek, Josef ;
Potmesil, Jiri ;
Vanecek, Milan .
CHEMICAL VAPOR DEPOSITION, 2008, 14 (7-8) :181-186
[9]   RESISTIVITY OF CHEMICAL VAPOR-DEPOSITED DIAMOND FILMS [J].
LANDSTRASS, MI ;
RAVI, KV .
APPLIED PHYSICS LETTERS, 1989, 55 (10) :975-977
[10]   Surface conductivity of the diamond: A novel transfer doping mechanism [J].
Ley, L ;
Ristein, J ;
Meier, F ;
Riedel, M ;
Strobel, P .
PHYSICA B-CONDENSED MATTER, 2006, 376 :262-267