Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1

被引:79
|
作者
Choudhary, Om P. [1 ]
Paz, Aviv [2 ]
Adelman, Joshua L. [3 ]
Colletier, Jacques-Philippe [4 ,5 ,6 ]
Abramson, Jeff [2 ,7 ]
Grabe, Michael [3 ,8 ]
机构
[1] Joint Carnegie Mellon Univ Univ Pittsburgh PhD Pr, Pittsburgh, PA USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA 90095 USA
[3] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA
[4] Univ Grenoble Alpes, Inst Biol Struct, Grenoble, France
[5] CNRS, Inst Biol Struct, Grenoble, France
[6] Commissariat Energie Atom & Energies Alternat, Direct Sci Vivant, Inst Biol Struct, Grenoble, France
[7] Tata Inst Fundamental Res, Natl Ctr Biol Sci, Inst Stem Cell Biol & Regenerat Med, Bangalore, Karnataka, India
[8] Univ Calif San Francisco, Cardiovasc Res Inst, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 美国安德鲁·梅隆基金会;
关键词
DEPENDENT ANION CHANNEL; MITOCHONDRIAL OUTER-MEMBRANE; SELECTIVE CHANNEL; VOLTAGE; DYNAMICS; EQUILIBRIUM; MODEL; GATE;
D O I
10.1038/nsmb.2841
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The voltage-dependent anion channel (VDAC) mediates the flow of metabolites and ions across the outer mitochondrial membrane of all eukaryotic cells. The open channel passes millions of ATP molecules per second, whereas the closed state exhibits no detectable ATP flux. High-resolution structures of VDAC1 revealed a 19-stranded beta-barrel with an alpha-helix partially occupying the central pore. To understand ATP permeation through VDAC, we solved the crystal structure of mouse VDAC1 (mVDAC1) in the presence of ATP, revealing a low-affinity binding site. Guided by these coordinates, we initiated hundreds of molecular dynamics simulations to construct a Markov state model of ATP permeation. These simulations indicate that ATP flows through VDAC through multiple pathways, in agreement with our structural data and experimentally determined physiological rates.
引用
收藏
页码:626 / 632
页数:7
相关论文
共 50 条
  • [1] Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1
    Om P Choudhary
    Aviv Paz
    Joshua L Adelman
    Jacques-Philippe Colletier
    Jeff Abramson
    Michael Grabe
    Nature Structural & Molecular Biology, 2014, 21 : 626 - 632
  • [2] State-Dependence of Ion and ATP Transport in VDAC1 Protein Investigated with GCMC/BD Simulations
    Amin, Kazi S.
    Rostovtseva, Tatiana K.
    Bezrukov, Sergey M.
    Noskov, Sergei Y.
    Van Ngo
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 398A - 398A
  • [3] ATP Transport through VDAC and the VDAC-Tubulin Complex Probed by Equilibrium and Nonequilibrium MD Simulations
    Noskov, Sergei Yu.
    Rostovtseva, Tatiana K.
    Bezrukov, Sergey M.
    BIOCHEMISTRY, 2013, 52 (51) : 9246 - 9256
  • [4] VDAC1: from structure to cancer therapy
    Shoshan-Barmatzt, Varda
    Mizrachi, Dario
    FRONTIERS IN ONCOLOGY, 2012, 2
  • [5] VDAC1-interacting anion transport inhibitors inhibit VDAC1 oligomerization and apoptosis
    Ben-Hail, Danya
    Shoshan-Barmatz, Varda
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2016, 1863 (07): : 1612 - 1623
  • [6] Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1
    Arif, Tasleem
    Shteinfer-Kuzmine, Anna
    Shoshan-Barmatz, Varda
    BIOMOLECULES, 2024, 14 (10)
  • [7] Anion-transport inhibitors interact and inhibit VDAC1 oligomerization
    Ben-Hail, D.
    Shoshan-Barmatz, V.
    FEBS JOURNAL, 2013, 280 : 154 - 155
  • [8] Analysis of the CLC-1 ATP Binding Site by Structure-Guided Mutagenesis
    Tseng, Pang-Yen
    Chen, Tsung-Yu
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 320A - 320A
  • [9] Brownian Dynamics Simulations of Ion Transport through the VDAC
    Lee, Kyu Il
    Rui, Huan
    Pastor, Richard W.
    Im, Wonpil
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 611 - 619
  • [10] Rhodopsin Engineering through Structure-Guided Recombination
    Rice, Austin J.
    Bedbrook, Claire N.
    Yang, Kevin K.
    Gradinaru, Viviana
    Arnold, Frances H.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 170A - 170A