New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces

被引:49
作者
Tian, B
Gao, YT
机构
[1] CCAST,WORLD LAB,BEIJING 100080,PEOPLES R CHINA
[2] LANZHOU UNIV,DEPT COMP SCI,LANZHOU 730000,PEOPLES R CHINA
[3] LANZHOU UNIV,INST SCI & ENGN COMPUTAT,LANZHOU 730000,PEOPLES R CHINA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 11期
关键词
D O I
10.1088/0305-4470/29/11/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integrable dispersive long wave equations, especially the higher dimensional ones, are of current interest in both physics and mathematics. Obtained in this paper, via a symbolic-computation-based method, are new families of exact solutions to the (2 + 1)-dimensional integrable dispersive long wave equations. Sample solutions from those families are presented. Solitary waves are merely a special case in one family.
引用
收藏
页码:2895 / 2903
页数:9
相关论文
共 21 条
[11]   HIGHER-ORDER WATER-WAVE EQUATION AND METHOD FOR SOLVING IT [J].
KAUP, DJ .
PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (02) :396-408
[12]   MATHEMATICS OF DISPERSIVE WATER-WAVES [J].
KUPERSHMIDT, BA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) :51-73
[13]  
LIFSHITZ EM, 1981, LANDAU LIFSHITZ COUR, V10
[14]   PAINLEVE TEST FOR THE INTEGRABLE DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
LOU, S .
PHYSICS LETTERS A, 1993, 176 (1-2) :96-100
[15]   SYMMETRIES AND ALGEBRAS OF THE INTEGRABLE DISPERSIVE LONG-WAVE EQUATIONS IN (2+1)-DIMENSIONAL SPACES [J].
LOU, SY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (09) :3235-3243
[16]  
MATVEEV VB, 1979, ANN I H POINCARE A, V31, P25
[17]   THE NONCLASSICAL METHOD IS MORE GENERAL THAN THE DIRECT METHOD FOR SYMMETRY REDUCTIONS - AN EXAMPLE OF THE FITZHUGH-NAGUMO EQUATION [J].
NUCCI, MC ;
CLARKSON, PA .
PHYSICS LETTERS A, 1992, 164 (01) :49-56
[18]   GROUP THEORETICAL-ANALYSIS OF DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
PAQUIN, G ;
WINTERNITZ, P .
PHYSICA D, 1990, 46 (01) :122-138
[19]  
Rajaraman R., 1982, SOLITONS INSTANTONS
[20]  
TIAN B, 1996, IN PRESS PHYS SCR