Optimal adaptive fault diagnosis of cubic hamiltonian graphs

被引:0
|
作者
Araki, T [1 ]
机构
[1] Iwate Univ, Dept Comp & Informat Sci, Morioka, Iwate 0208551, Japan
来源
I-SPAN 2004: 7TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGS | 2004年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of adaptive fault diagnosis for multiprocessor systems modeled by cubic hamiltonian graphs. Each node in a system is either faulty or fault-free, and the aim of fault diagnosis is to identify correctly faulty/fault-free status of all nodes. In order to achieve it, each node tests their neighbors and output the results of tests. If the test node is fault-free, it always outputs correct test results, but if the test node is faulty, the result of the test cannot be trusted. We give a sufficient condition for a cubic hamiltonian graph to be adaptively diagnosed in 3 testing rounds, provided that each node participates in at most one test of each round. It is the optimal number of testing rounds. The class of these graphs that satisfy this condition contains several important networks.
引用
收藏
页码:162 / 167
页数:6
相关论文
共 50 条
  • [1] Optimal Fault-Tolerant Hamiltonian and Hamiltonian Connected Graphs
    Chen, Y-Chuang
    Huang, Yong-Zen
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 : 345 - +
  • [2] CUBIC GRAPHS WITH HAMILTONIAN SQUARE
    FLEISCHN.H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A31 - &
  • [3] Almost Hamiltonian Cubic Graphs
    Punnim, Narong
    Saenpholphat, Varaporn
    Thaithae, Sermsri
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (01): : 83 - 86
  • [4] The Hamiltonian Number of Cubic Graphs
    Thaithae, Sermsri
    Punnim, Narong
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 213 - 223
  • [5] Optimal adaptive fault diagnosis of hypercubes
    Björklund, A
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 527 - 534
  • [6] On the Cycle Spectrum of Cubic Hamiltonian Graphs
    Janina Müttel
    Dieter Rautenbach
    Friedrich Regen
    Thomas Sasse
    Graphs and Combinatorics, 2013, 29 : 1067 - 1076
  • [7] On the Cycle Spectrum of Cubic Hamiltonian Graphs
    Muettel, Janina
    Rautenbach, Dieter
    Regen, Friedrich
    Sasse, Thomas
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1067 - 1076
  • [8] HAMILTONIAN CYCLES IN SQUARE OF CUBIC GRAPHS
    FLEISCHN.H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (07): : 1050 - &
  • [9] ALMOST ALL CUBIC GRAPHS ARE HAMILTONIAN
    ROBINSON, RW
    WORMALD, NC
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (02) : 117 - 125
  • [10] HAMILTONIAN CUBIC GRAPHS AND CENTRALIZERS OF INVOLUTIONS
    BABAI, L
    FRANKL, P
    KOLLAR, J
    SABIDUSSI, G
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (03): : 458 - 464