Identification of the tropical tropopause transition layer using the ozone-water vapor relationship

被引:40
作者
Pan, Laura L. [1 ]
Paulik, Laura C. [1 ]
Honomichl, Shawn B. [1 ]
Munchak, Leigh A. [1 ]
Bian, Jianchun [2 ]
Selkirk, Henry B. [3 ]
Voemel, Holger [4 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[2] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Middle Atmosphere & Global Environm Obser, Beijing, Peoples R China
[3] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[4] GRUAN Lead Ctr, Meteorol Observ, Lindenberg, Germany
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
LOWERMOST STRATOSPHERE; TRANSPORT; CLIMATOLOGY; HEIGHT; MODEL;
D O I
10.1002/2013JD020558
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present a method of identifying the tropical tropopause transition layer (TTL) using chemical tracer-tracer relationships. Coincident ozone (O-3) and water vapor (H2O) measurements over Alajuela, Costa Rica (similar to 10 degrees N), in July and August 2007 are used to demonstrate the concept. In the tracer-tracer space, the O-3 and H2O relationship helps to separate the transition layer air mass from the background troposphere and stratosphere. This tracer relationship-based transition layer is found to span an approximately 40 K potential temperature range between 340 and 380 K and is largely confined between the level of minimum stability (LMS) and the cold point tropopause (CPT). This chemical composition-based transition layer is, therefore, consistent with a definition of the TTL based on the thermal structure, for which the LMS and CPT are the lower and upper boundaries of TTL, respectively. We also examine the transition layer over the region of Asian summer monsoon (ASM) anticyclone using the measurements over Kunming, China (similar to 25 degrees N), and compare its behavior with the TTL structure in the deep tropics. The comparison shows that the transition layer over the ASM is similar to the TTL, although the data suggest the ASM transition layer lies at higher potential temperature levels and is potentially prone to the influence of extratropical processes.
引用
收藏
页码:3586 / 3599
页数:14
相关论文
共 49 条
[11]   Identifying the top of the tropical tropopause layer from vertical mass flux analysis and CALIPSO lidar cloud observations [J].
Fu, Qiang ;
Hu, Yongxiang ;
Yang, Qiong .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (14)
[12]   TROPICAL TROPOPAUSE LAYER [J].
Fueglistaler, S. ;
Dessler, A. E. ;
Dunkerton, T. J. ;
Folkins, I. ;
Fu, Q. ;
Mote, P. W. .
REVIEWS OF GEOPHYSICS, 2009, 47
[13]   THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE [J].
Gettelman, A. ;
Hoor, P. ;
Pan, L. L. ;
Randel, W. J. ;
Hegglin, M. I. ;
Birner, T. .
REVIEWS OF GEOPHYSICS, 2011, 49
[14]   A climatology of the tropical tropopause layer [J].
Gettelman, A ;
Forster, PMD .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2002, 80 (4B) :911-924
[15]   A Global Survey of Static Stability in the Stratosphere and Upper Troposphere [J].
Grise, Kevin M. ;
Thompson, David W. J. ;
Birner, Thomas .
JOURNAL OF CLIMATE, 2010, 23 (09) :2275-2292
[16]  
HAYNES P, 2001, SPARC NEWSLETTER, V17, P3
[17]   A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO [J].
Hegglin, M. I. ;
Boone, C. D. ;
Manney, G. L. ;
Walker, K. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[18]  
HELD IM, 1982, J ATMOS SCI, V39, P412, DOI 10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO
[19]  
2
[20]  
Highwood EJ, 1998, Q J ROY METEOR SOC, V124, P1579, DOI 10.1002/qj.49712454911