Sparse Signal Estimation by Maximally Sparse Convex Optimization

被引:142
作者
Selesnick, Ivan W. [1 ]
Bayram, Ilker [2 ]
机构
[1] NYU Polytech Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey
基金
美国国家科学基金会;
关键词
Convex optimization; sparse optimization; sparse regularization; basis pursuit; lasso; deconvolution; L1; norm; threshold function; non-convex optimization; NONCONCAVE PENALIZED LIKELIHOOD; MINIMIZATION METHODS; RECONSTRUCTION; SHRINKAGE; SELECTION; DECONVOLUTION; DECOMPOSITION; ALGORITHMS; RECOVERY;
D O I
10.1109/TSP.2014.2298839
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e. g., sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.
引用
收藏
页码:1078 / 1092
页数:15
相关论文
共 50 条
  • [41] Reweighted Dual Sparse Regularization and Convex Optimization for Bearing Fault Diagnosis
    Wang, Li
    Ma, Sai
    Han, Qinkai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [42] Avoiding Synchronization in First-Order Methods for Sparse Convex Optimization
    Devarakonda, Aditya
    Demmel, James
    Fountoulakis, Kimon
    Mahoney, Michael W.
    2018 32ND IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2018, : 409 - 418
  • [43] AN EFFICIENT ALGORITHM FOR NON-CONVEX SPARSE OPTIMIZATION
    Wang, Yong
    Liu, Wanquan
    Zhou, Guanglu
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (04) : 2009 - 2021
  • [44] SPARSE SIGNAL ESTIMATION WITH NONLINEAR CONJUGATE GRADIENTS
    Marjanovic, Goran
    Solo, Victor
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3766 - 3769
  • [45] A smoothing method for sparse optimization over convex sets
    M. Haddou
    T. Migot
    Optimization Letters, 2020, 14 : 1053 - 1069
  • [46] Ranked Sparse Signal Support Detection
    Fletcher, Alyson K.
    Rangan, Sundeep
    Goyal, Vivek K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5919 - 5931
  • [47] Block-Sparse Recovery via Convex Optimization
    Elhamifar, Ehsan
    Vidal, Rene
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4094 - 4107
  • [48] Converting ADMM to a proximal gradient for efficient sparse estimation
    Shimmura, Ryosuke
    Suzuki, Joe
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (02) : 725 - 745
  • [49] A MULTILEVEL FRAMEWORK FOR SPARSE OPTIMIZATION WITH APPLICATION TO INVERSE COVARIANCE ESTIMATION AND LOGISTIC REGRESSION
    Treister, Eran
    Turek, Javier S.
    Yavneh, Irad
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) : S566 - S592
  • [50] c-LASSO and its dual for sparse signal estimation from array data
    Mecklenbraeuker, Christoph F.
    Gerstoft, Peter
    Zoechmann, Erich
    SIGNAL PROCESSING, 2017, 130 : 204 - 216